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PREFACE TO FIFTH EDITION

When the first edition of
"
Alternating-Current Phenomena"

appeared nearly twenty years ago, it was a small volume of 424

pages. From this, it grew to a volume of 746 pages in the fourth

edition, which appeared eight years ago. Since that time, the

advance of electrical engineering has been more rapid than ever

before, and any attempt to treat adequately in one volume all

the new material developed in the last eight years, and the

material which during this time has become of such importance
as to require more extensive consideration, thus became out of the

question. It was found necessary, therefore, to divide the work
into three volumes. In the following, under the old title

"
Theory

and Calculation of Alternating-Current Phenomena," is included

only the discussion of the most common and general phenomena
and apparatus, old and new, revised and expanded so as to bring
it up to our present knowledge. All the material, some partly

old, but mostly new, which could not find place in the present

volume, will be presented in two supplementary volumes, under

the titles
"
Theory and Calculation of Electric Circuits," and

"
Theory and Calculation of Electrical Apparatus."
In the study of electrical engineering theory, it is recommended

to read first Part I of
"
Theoretical Elements of Electrical Engi-

neering," and then the first three sections of "Alternating Cur-

rent Phenomena," but to parallel the reading with that of the

chapters of
"
Engineering Mathematics," which deal with the

mathematics involved. Then Sections IV to VII of "Alter-

nating-Current Phenomena" should be studied simultaneously
with the corresponding discussion of the apparatus in the Part

II of "Theoretical Elements." Following this should be taken

up the study of "Theory and Calculation of Electric Circuits/'

"Theory and Calculation of Electrical Apparatus," and the first

three sections of "Transient Phenomena," and, finally, the study
of "Electric Discharges, Waves and Impulses" and of the fourth

section of "Transient Phenomena."

In the present edition of "Alternating-Current Phenomena,"
the crank diagram of vector representation, and the symbolic
method based on it, which denotes the inductive reactance by

vii



viii PREFACE TO FIFTH EDITION

Z = r + jx }
have been adopted in conformity with the decision

of the International Electrical Congress of Turin, but the time

diagram or polar coordinate system has been explained and dis-

cussed in Chapter VII, since the crank diagram is somewhat

inferior to the polar diagram, as it is limited to sine waves, and

the time diagram will thus remain in use when dealing with

general waves and their graphic reduction.

CHARLES P. STEINMETZ.
SCHENECTADY, N. Y.,

May, 1916.



PREFACE TO FIRST EDITION

THE following volume is intended as an exposition of the

methods which I have found useful in the theoretical investiga-

tion and calculation of the manifold phenomena taking place in

alternating-current circuits, and of their application to alternat-

ing-current apparatus.

While the book is not intended as first instruction for a begin-

ner, but presupposes some knowledge of electrical engineering, I

have endeavored to make it as elementary as possible, and have

therefore used only common algebra and trigonometry, practi-

cally excluding calculus, except in 144 to 151 and Appendix II;

and even 144 to 151 have been paralleled by the elementary

approximation of the same phenomenon in 140 to 143.

All the methods used in the book have been introduced and

explicitly discussed, with examples of their application, the first

part of the book being devoted to this. In the investigation of

alternating-current phenomena and apparatus, one method only

has usually been employed, though the other available methods

are sufficiently explained to show their application.

A considerable part of the book is necessarily devoted to the

application of complex imaginary quantities, as the method

which I found most useful in dealing with alternating-current

phenomena; and in this regard the book may be considered as

an expansion and extension of my paper on the application of

complex imaginary quantities to electrical engineering, read be-

fore the International Electrical Congress at Chicago, 1893. The

complex imaginary quantity is gradually introduced, with full

explanations, the algebraic operations with complex quantities

being discussed in Appendix I, so as not to require from the reader

any previous knowledge of the algebra of the complex imaginary

plane.

While those phenomena which are characteristic of polyphase

systems, as the resultant action of the phases, the effects of un-

balancing, the transformation of polyphase systems, etc., have

been discussed separately in the last chapters, many of the in-

vestigations in the previous parts of the book apply to poly-

phase systems as well as single-phase circuits, as the chapters on

induction motors, generators, synchronous motors, etc.

ix



x PREFACE TO FIRST EDITION

A part of the book is original investigation, either published
here for the first time, or collected from previous publications

and more fully explained. Other parts have been published be-

fore by other investigators, either in the same, or more frequently
in a different form.

I have, however, omitted altogether literary references, for the

reason that incomplete references would be worse than none,
while complete references would entail the expenditure of much
more time than is at my disposal, without offering sufficient com-

pensation; since I believe that the reader who wants informa-

tion on some phenomenon or apparatus is more interested in

the information than in knowinjg who first investigated the

phenomenon.

Special attention has been given to supply a complete and ex-

tensive index for easy reference, and to render the book as free

from errors as possible. Nevertheless, it probably contains some

errors, typographical and otherwise; and I will be obliged to any
reader who on discovering an error or an apparent error will

notify me.

I take pleasure here in expressing my thanks to Messrs. W. D.

WEAVER, A. E. KENNELLY, and TOWNSEND WOLCOTT, for the

interest they have taken in the book while in the course of pub-

lication, as well as for the valuable assistance given by them in

correcting and standardizing the notation to conform to the

international system, and numerous valuable suggestions regard-

ing desirable improvements.
Thanks are due to the publishers, who have spared no

effort or expense to make the book as creditable as possible

mechanically.

CHARLES PROTEUS STEINMETZ.

January, 1897.
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SECTION I

METHODS AND CONSTANTS

CHAPTER I

INTRODUCTION

1. In the practical applications of electrical energy, we meet

with two different classes of phenomena, due respectively to the

continuous current and to the alternating current.

The continuous-current phenomena have been brought within

the realm of exact analytical calculation by a few fundamental

laws:

g
1. Ohm's law: i -, where r, the resistance, is a constant

of the circuit.

2. Joule's law: P = i
2
r, where P is the power, or the rate at

which energy is expended by the current, i, in the resistance, r.

3. The power equation: P =
ei, where PQ is the power

expended in the circuit of e.m.f., e, and current, i.

4. Kirchhoff's laws:

(a) The sum of all the e.m.fs. in a closed circuit = 0, if the

e.m.f. consumed by the resistance, ir, is also considered as a

counter e.m.f., and all the e.m.fs. are taken in their proper
direction.

(b) The sum of all the currents directed toward a distributing

point = 0.

In alternating-current circuits, that is, in circuits in which the

currents rapidly and periodically change their direction, these

laws cease to hold. Energy is expended, not only in the con-

ductor through its ohmic resistance, but also outside of it; energy
is stored up and returned, so that large currents may exist

simultaneously with high e.m.fs., without representing any
considerable amount of expended energy, but merely a surging
t'o and fro of energy; the ohmic resistance ceases to be the deter-

1



ALT I'll \ ATING-CURRENT PHENOMENA

mining factor of current value; currents may divide into com-

ponents, each of which is larger than the undivided current, etc.

2. In place of the above-mentioned fundamental laws of

continuous currents, we find in alternating-current circuits the

following :

Q
Ohm's law assumes the form i = -, where z, the apparent

resistance, or impedance, is no longer a constant of the circuit,

but depends upon the frequency of the currents; and in circuits

containing iron, etc., also upon the e.m.f.

Impedance, z, is, in the system of absolute units, of the same

dimension as resistance (that is, of the dimension It" 1 = velocity),

and is expressed in ohms.

It consists of two components, the resistance, r, and the

reactance, x, or

z = Vr 2 + x 2
.

The resistance, r, in circuits where energy is expended only
in heating the conductor, is the same as the ohmic resistance of

continuous-current circuits. In circuits, however, where energy
is also expended outside of the conductor by magnetic hysteresis,

mutual inductance, dielectric hysteresis, etc., r is larger than the

true ohmic resistance of the conductor, since it refers to the total

expenditure of energy. It may be called then the effective re-

sistance. It may no longer be a constant of the circuit.

The reactance, x, does not represent the expenditure of energy
as does the effective resistance, r, but merely the surging to and

fro of energy. It is not a constant of the circuit, but depends

upon the frequency, and frequently, as in circuits containing

iron, or in electrolytic conductors, upon the e.m.f. also. Hence

while the effective resistance, r, refers to the power or active

component of e.m.f., or the e.m.f. in phase with the current, the re-

actance, x, refers to the wattless or reactive component of e.m.f.,

or the e.m.f. in quadrature with the current.

3. The principal sources of reactance are electromagnetism

and capacity.

Electromagnetism

An electric current, i, in a circuit produces a magnetic flux

surrounding the conductor in lines of magnetic force (or more

correctly, lines of magnetic induction), of closed, circular, or

other form, which alternate with the alternations of the current,
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and thereby generate an e.m.f. in the conductor. Since the

magnetic flux is in phase with the current, and the generated

e.m.f. 90, or a quarter period, behind the flux, this e.m.f. of

self-induction lags 90, or a quarter period, behind the current;

that is, is in quadrature therewith, and therefore wattless.

If now < = the magnetic flux produced by, and interlinked

with, the current, i (where those lines of magnetic force which

are interlinked n-fold, or pass around n turns of the conductor,

are counted n times), the ratio, ,
is denoted by L, and called

%

the inductance of the circuit. It is numerically equal, in absolute

units, to the interlinkages of the circuit with the magnetic
flux produced by unit current, and is, in the system of abso-

lute units, of the dimension of length. Instead of the inductance,

L, sometimes its ratio with the ohmic resistance, r, is used, and

is called the time-constant of the circuit,

If a conductor surrounds with n turns a magnetic circuit of

reluctance, (R, the current, i, in the conductor represents the

m.m.f. of m ampere-turns, and hence produces a magnetic flux

777

of -- lines of magnetic force, surrounding each n turns of the
ot

f\ ^i

conductor, and thereby giving $ = interlinkages between
(H

the magnetic and electric circuits. Hence the inductance is

L =:

7
==

CR'

The fundamental law of electromagnetic induction is, that

the e.m.f. generated in a conductor by a magnetic field is pro-

portional to the rate of cutting of the conductor through the

magnetic field.

Hence, if i is the current and Z/ is the inductance of a cir-

cuit, the magnetic flux interlinked with a circuit of current,

i
t

is Li, and 4/Li is consequently the average rate of cutting;

that is, the number of lines of force cut by the conductor per

second, where / = frequency, or number of complete periods

(double reversals) of the current per second, i maximum
value of current.

Since the maximum rate of cutting bears to the average rate

the same ratio as the quadrant to the radius of a circle (a sinu-
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soidal variation supposed), that is, the ratio ~ -f- 1, the maxi-
2i

mum rate of cutting is 2irf, and, consequently, the maximum
value of e.m.f. generated in a circuit of maximum current value,

i, and inductance, L, is

e = 2irfLi.

Since the maximum values of sine waves are proportional (by
factor \/2) to the effective values (square root of mean squares) ,

if i = effective value of alternating current, e = 2irfLi is the
/>

effective value of e.m.f. of self-induction, and the ratio,
- = 2 irfL,

is the inductive reactance)

xm = 2 TT/L.

Thus, if r = resistance, xm reactance, z = impedance,
the e.m.f. consumed by resistance is e\ ir\

the e.m.f. consumed by reactance is 62 = ixm ;

and, since both e.m.fs. are in quadrature to each other, the total

e.m.f. is

e = Vei 2 + e2
2 = i Vr 2 + xm 2 =

;

that is, the impedance, z, takes in alternating-current circuits

the place of the resistance, r, in continuous-current circuits.

Capacity

4. If upon a condenser of capacity C an e.m.f., e, is impressed,

the condenser receives the electrostatic charge, Ce.

If the e.m.f., e
}
alternates with the frequency, /, the average

rate of charge and discharge is 4 /, and 2 irf the maximum rate

of charge and discharge, sinusoidal waves supposed; hence,

i = 2 irfCe, the current to the condenser, which is in quadrature
to the e.m.f. and leading.

It is then
1

27T/C'

the
"
condensive reactance."

Polarization in electrolytic conductors acts to a certain extent

like capacity.

The condensive reactance is inversely proportional to the

frequency and represents the leading out-of-phase wave; the

inductive reactance is directly proportional to the frequency,

and represents the lagging out-of-phase wave. Hence both are
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of opposite sign with regard to each other, and the total react-

ance of the circuit is their difference, x = xm xc .

The total resistance of a circuit is equal to the sum of all the

resistances connected in series; the total reactance of a circuit

is equal to the algebraic sum of all the reactances connected

in series; the total impedance of a circuit, however, is not equal
to the sum of all the individual impedances, but in general less,

and is the resultant of the total resistance and the total reactance.

Hence it is not permissible directly to add impedances, as it is

with resistances or reactances.

A further discussion of these quantities will be found in the

later chapters.

5. In Joule's law, P =
i*r, r is not the true ohmic resistance,

but the "
effective resistance;" that is, the ratio of the power

component of e.m.f. to the current. Since in alternating-cur-

rent circuits, in addition to the energy expended in the ohmic re-

sistance of the conductor, energy is expended, partly outside,

partly inside of the conductor, by magnetic hysteresis, mutual

induction, dielectric hysteresis, etc., the effective resistance,

r, is in general larger than the true resistance of the conductor,
sometimes many time larger, as in transformers at open sec-

ondary circuit, and is no longer a constant of the circuit. It is

more fully discussed in Chapter VIII.

In alternating-current circuits the power equation contains

a third term, which, in sine waves, is the cosine of the angle of

the difference of phase between e.m.f. and current:

PQ
= ei cos 6.

Consequently, even if e and i are both large, P may be very

small, if cos 6 is small, that is, 6 near 90.

KirchhofFs laws become meaningless in their original form,

since these laws consider the e.m.fs. and currents as directional

quantities, counted positive in the one, negative in the opposite

direction, while the alternating current has no definite direction

of its own.

6. The alternating waves may have widely different shapes;

some of the more frequent ones are shown in a later chapter.

The simplest form, however, is the sine wave, shown in Fig. 1,

or, at least, a wave very near sine shape, which may be repre-

sented analytically by

i = I sin^ ( t
-

tj)
= I sin 2irf(t

-
<i),

to
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where I is the maximum value of the wave, or its amplitude;

t Q is the time of one complete cyclic repetition, or the period of

the wave, or / = is the frequency or number of complete
to

periods per second; and t\ is the time, where the wave is zero,

or the epoch of the wave, generally called the phase.
1

FIG. 1. Sine wave.

Obviously, "phase" or "epoch" attains a practical meaning
only when several waves of different phases are considered, as

"difference of phase." When dealing with one wave only, we

may count the time from the moment when the wave is zero,

or from the moment of its maximum, representing it respec-

tively by
i = I sin 2 irft,

and i = I cos 2 irjt.

Since it is a univalent function of time, that is, can at a given
instant have one value only, by Fourier's theorem, any alter-

nating wave, no matter what its shape may be, can be represented

by a series of sine functions of different frequencies and different

phases, in the form

i = /i sin 2-jrf(t
-

ti) + 7 2 sin 4irf(t
-

*2)

+ /s sin 6 wj(t
-

t t ) + . . .

where /*, / 2 , /s, . . . are the maximum values of the different

components of the wave, ti, 2, ^3 ... the times, where the

respective components pass the zero value.

1 "Epoch" is the time where a periodic function reaches a certain value,

for instance, zero; and "phase" is the angular position, with respect to a

datum position, of a periodic function at a given time. Both are in alter-

nate-current phenomena only different ways of expressing the same thing.
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The first term, /i sin 2irf(t j), is called the fundamental

wave, or the first harmonic; the further terms are called the higher

harmonics, or
"
overtones/' in analogy to the overtones of sound

waves. In sin 2mrf(t tn) is the nih harmonic.

By resolving the sine functions of the time differences, t t\,

t U . . ., we reduce the general expression of the wave to

the form:

i = A i sin 2 irft -f- A 2 sin 4 wft + A 3 sin 6 irft + . . .

+ 1 cos 2 TT/Y + 2 cos 4 -n-ft + 3 cos 6 vft + . . .

The two half-waves of each period, the positive wave and the

negative wave (counting in a definite direction in the circuit), are

usually identical, because, for reasons inherent in their construc-

tion, practically all alternating-current machines generate e.m.fs.

in which the negative half-wave is identical with the positive.

Hence the even higher harmonics, which cause a difference in

the shape of the two half-waves, disappear, and only the odd
harmonics exist, except in very special cases.

Hence the general alternating-current wave is expressed by:

i = Ii sin 2irf(t
-

ti) + 7 3 sin 6ir/(
-

t s)

+ / 5 sin Wirf(t
-

U) + . . ;

'

or,

i = Ai sin 2irft + A 3 sin Qirft + A b sin 10^ + . . .

+ Bi cos 2 Trft + B 3 cos 6 irft -f- B 5 cos 10 irft + .

\

FIG. 2. Wave without even harmonics.

Such a wave is shown in Fig. 2, while Fig. 3 shows a wave
whose half-waves are different. Figs. 2 and 3 represent the sec-

ondary currents of a Ruhmkorff coil, whose secondary coil is

closed by a high external resistance; Fig. 3 is the coil operated
in the usual way, by make and break of the primary battery
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current; Fig. 2 is the coil fed with reversed currents by a com-

mutator from a battery.

7. Inductive reactance, or electromagnetic momentum, which

is always present in alternating-current circuits to a large ex-

tent in generators, transformers, etc. tends to suppress the

higher harmonics of a complex harmonic wave more than the

FIG. 3. Wave with even harmonics.

fundamental harmonic, since the inductive reactance is pro-

portional to the frequency, and is thus greater with the higher

harmonics, and thereby causes a general tendency toward simple
sine shape, which has the effect that, in general, the alternating

currents in our light and power circuits are sufficiently near sine

waves to make the assumption of sine shape permissible.

Hence, in the calculation of alternating-current phenomena,
we can safely assume the alternating wave as a sine wave, with-

out making any serious error; and it will be sufficient to keep the

distortion from sine shape in mind as a possible disturbing factor,

which, however, is in practice generally negligible except in the

case of low-resistance circuits containing large inductive reactance

and large condensive reactance in series with each other, so as to

produce resonance effects of these higher harmonics, and also

under certain conditions of long-distance power transmission and

high-potential distribution.

S. Experimentally, the impedance, effective resistance, induc-

tance, capacity, etc., of a circuit or a part of a circuit are con-

veniently determined by impressing a sine wave of alternating

e.m.f. upon the circuit and measuring with alternating-current
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ammeter, voltmeter and wattmeter the current, i, in the circuit,

the potential difference, e, across the circuit, and the power, p y

consumed in the circuit.

Then,
>

The impedance, z =
-.;

P
The phase angle, cos 6 =

.;
61

P
The effective resistance, r =

-^.

From these equations,

The reactance, x = \/z 2 r 2
.

If the reactance is inductive, the inductance is

X

If the reactance is condensive, the capacity or its equivalent is

=
2^fx'

wherein / = the frequency of the impressed e.m.f . If the react-

ance is the resultant of inductive and condensive reactances

connected in series, it is

L and C can be found by measuring the reactance at two different

frequencies, /i and /2 ,
as follows;

then,

L =

and

C =

A moderate deviation of the wave of alternating impressed
e.m.f. from sine shape does not cause any serious error as long as

the circuit contains no capacity.

In the presence of capacity, however, even a very slight dis-

tortion of wave shape may cause an error of some hundred per
cent.
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To measure capacity and condensive reactance by ordinary

alternating currents it is, therefore, advisable to insert in series

with the condensive reactance a non-inductive resistance or induc-

tive reactance which is larger than the condensive reactance, or

to use a source of alternating current, in which the higher har-

monics are suppressed, as the ^-connection of Constant Potential

Constant-current Transformation, paragraph 64.

In iron-clad inductive reactances, or reactances containing iron

in the magnetic circuit, the reactance varies with the magnetic
induction in the iron, and thereby with the current and the im-

pressed e.m.f. Therefore the impressed e.m.f. or the magnetic
induction must be given, to which the ohmic reactance refers, or

preferably a curve is plotted from test (or calculation), giving the

ohmic reactance, or, as usually done, the impressed e.m.f. as

function of the current. Such a curve is called an excitation

curve or impedance curve, and has the general character of the

magnetic characteristic. The same also applies to electrolytic

reactances, etc.

The calculation of an inductive reactance is accomplished by

calculating the magnetic circuit, that is, determining the ampere-
turns m.m.f. required to send the magnetic flux through the

magnetic reluctance. In the air part of the magnetic circuit,

unit permeability (or, referred to ampere-turns as m.m.f., reluc-

tivity j )is used; for the iron part, the ampere-turns are taken
4 7T/

from the curve of the magnetic characteristic, as discussed in the

following.
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INSTANTANEOUS VALUES AND INTEGRAL VALUES

9. In a periodically varying function, as an alternating cur-

rent, we have to distinguish between the instantaneous value,

which varies constantly as function of the time, and the integral

value, which characterizes the wave as a whole.

As such integral value, almost exclusively the effective value

is used, that is, the square root of the mean square ;
and wherever

the intensity of an electric wave is mentioned without further

reference, the effective value is understood.

The maximum value of the wave is of practical interest only in

few cases, and may, besides, be different for the two half-waves,

as in Fig. 3.

As arithmetic mean, or average value, of a wave as in Figs. 4 and

5, the arithmetical average of all the instantaneous values dur-

ing one complete period is understood.

FIG. 4. Alternating wave.

This arithmetic mean is either =
0, as in Fig. 4, or it differs

from 0, as in Fig. 5. In the first case, the wave is called an

alternating wave, in the latter a pulsating wave.

Thus, an alternating wave is a wave whose positive values give

the same sum total as the negative values; that is, whose two

half-waves have in rectangular coordinates the same area, as

shown in Fig. 4.

11
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A pulsating wave is a wave in which one of the half-waves pre-

ponderates, as in Fig. 5.

By electromagnetic induction, pulsating waves are produced

only by commutating and unipolar machines (or by the super-

position of alternating upon direct currents, etc.).

All inductive apparatus without commutation give exclusively

alternating waves, because, no matter what conditions may exist

in the circuit, any line of magnetic force which during a complete

period is cut by the circuit, and thereby generates an e.m.f.,

must during the same period be cut again in the opposite direc-

tion, and thereby generate the same total amount of e.m.f. (Ob-

viously, this does not apply to circuits consisting of different

AVERAGE VALUE

\

FIG. 5. Pulsating wave.

parts movable with regard to each other, as in unipolar machines.)

A direct-current machine without commutator or collector rings,

or a coil-wound unipolar machine, thus is an impossibility.

Pulsating currents, and therefore pulsating potential differ-

ences across parts of a circuit can, however, be produced from an

alternating induced e.m.f. by the use of asymmetrical circuits,

as arcs, some electrochemical cells, as the aluminum-carbon cell,

etc. Most of the alternating-current rectifiers are based on the

use of such asymmetrical circuits.

In the following we shall almost exclusively consider the alter-

nating wave, that is, the wave whose true arithmetic mean value

= 0.

Frequently, by mean value of an alternating wave, the average

of one half-wave only is denoted, or rather the average of all

instantaneous values without regard to their sign. This mean

value of one half-wave is of importance mainly in the rectifica-
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tion of alternating e.m.fs., since it determines the unidirectional

value derived therefrom.

10. In a sine wave, the relation of the mean to the maximum
value is found in the following way:

Let, in Fig. 6, AOB represent a quadrant of a circle with radius 1.

7T

Then, while the angle 6 traverses the arc ~ from A to B, the
a

sine varies from to OB = 1. Hence the average variation of

7T

the sine bears to that of the corresponding arc the ratio 1 -f- ~,
ft

2
or -

-f- 1. The maximum variation of the sine takes place about
7T

its zero value, where the sine is equal to the arc. Hence the

maximum variation of the sine is equal to the variation of the

FIG. 6. FIG, 7.

corresponding arc, and consequently the maximum variation of

the sine bears to its average variation the same ratio as the av-

2
erage variation of the arc to that of the sine, that is, IT--, and

since the variations of a sine function are sinusoidal also, we have
2

Mean value of sine wave -r- maximum value = -
-f- 1 = 0.63663.

7T

The quantities, "current," "e.m.f.," "magnetism," etc., are

in reality mathematical fictions only, as the components of the

entities, "energy," "power," etc.; that is, they have no inde-

pendent existence, but appear only as squares or products.

Consequently, the only integral value of an alternating wave
which is of practical importance, as directly connected with the me-

chanical system of units, is that value which represents the same

power or effect as the periodical wave. This is called the effective
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value. Its square is equal to the mean square of the periodic

function, that is:

The effective value of an alternating wave, or the value repre-

senting the same effect as the periodically varying wave, is the square

root of the mean square.

In a sine wave, its relation to the maximum value is found in

the following way:

Let, in Fig. 7, AOB represent a quadrant of a circle with radius 1.

Then, since the sines of any angle, 6, and its complementary

angle, 90 6, fulfill the condition,

sin 2 6 -f sin 2
(90

-
6}

=
1,

the sines in the quadrant, AOB, can be grouped into pairs, so

that the sum of the squares of any pair = 1
; or, in other words,

the mean square of the sine = J^, and the square root of the

mean square, or the effective value of the sine,
= That is:

The effective value of a sine function bears to its maximum value

the ratio,

J_
V2

Hence, we have for the sine wave the following relations:

1 = 0.70711.

Max.
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12. All alternating-current instruments, as ammeter, volt-

meter, etc., measure and indicate the effective value. The maxi-

mum value and the mean value can be derived from the curve

of instantaneous values, as determined by wave-meter or

oscillograph.

Measurement of the alternating wave after rectification by
a unidirectional conductor, as an arc, gives the mean value with

direct-current instruments, that is, instruments employing a

permanent magnetic field, and the effective value with alternating-

current instruments.

Voltage determination by spark-gap, that is, by the striking

distance, gives a value approaching the maximum, especially

with spheres as electrodes of a diameter larger than the spark-

gap.



CHAPTER III

LAW OF ELECTROMAGNETIC INDUCTION

13. If an electric conductor moves relatively to a magnetic

field, an e.m.f. is generated in the conductor which is propor-

tional to the intensity of the magnetic field, to the length of the

conductor, and to the speed of its motion perpendicular to the

magnetic field and the direction of the conductor; or, in other

words, proportional to the number of lines of magnetic force

cut per second by the conductor.

As a practical unit of e.m.f., the volt is defined by the e.m.f.

generated in a conductor, which cuts 10 8 = 100,000,000 lines of

magnetic flux per second.

If the conductor is closed upon itself, the e.m.f. produces a

current.
.

A closed conductor may be called a turn or a convolution.

In such a turn, the number of lines of magnetic force cut per

second is the increase or decrease of the number of lines inclosed

by the turn, or n times as large with n turns.

Hence the e.m.f. in volts generated in n turns, or convolutions,

is n times the increase or decrease, per second, of the flux inclosed

by the turns, times 10~8
.

If the change of the flux inclosed by the turn, or by n turns,

does not take place uniformly, the product of the number of

turns times change of flux per second gives the average e.m.f.

If the magnetic flux, $, alternates relatively to a number of

turns, n that is, when the turns either revolve through the

flux or the flux passes in and out of the turns the total flux is

cut four times during each complete period or cycle, twice

passing into, and twice out of, the turns.

Hence, if / = number of complete cycles per second, or the

frequency of the flux, $, the average e.m.f. generated in n turns is

Eavg .
= 4 n$f 10~8 volts.

This is the fundamental equation of electrical engineering,

and applies to continuous-current, as well as to alternating-

current, apparatus.
16
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14. In continuous-current machines and in many alternators,

the turns revolve through a constant magnetic field; in other

alternators and in induction motors, the magnetic field revolves;
in transformers, the field alternates with respect to the sta-

tionary turns; in other apparatus, alternation and rotation occur

simultaneously, as in alternating-current commutator motors.

Thus, in the continuous-current machine, if n = number of

turns in series from brush to brush, $ = flux inclosed per turn,

and / = frequency, the e.m.f. generated in the machine is

E =
47i<3>/10~

8
volts, independent of the number of poles, of

series or multiple connection of the armature, whether of the

ring, drum, or other type.

In an alternator or transformer, if n is the number of turns in

series, 3> the maximum flux inclosed per turn, and /the frequency,
this formula gives

Eavg .

= 4n$/10- 8 volts.

Since the maximum e.m.f. is given by
7T

E*max. ~ "n-^avg.j

we have

Emax .

= 27m<l>/10-
8 volts.

And since the effective e.m.f. is given by

e ~

V2
we have

= 4.44 nf& 10~ 8
volts,

which is the fundamental formula of alternating-current induc-

tion by sine waves.

15. If, in a circuit of n turns, the magnetic flux, 3>, inclosed

by the circuit is produced by the current in the circuit, the

ratio,

flux X number of turns X 10~8

current

is called the inductance, L, of the circuit, in henrys.
The product of the number of turns, n, into the maximum

flux, <, produced by a current of / amperes effective, or

amperes maximum, is therefore

n$ = L7\/2 108
;



18 ALTERNATING-CURRENT PHENOMENA

and consequently the effective e.m.f . of self-induction is

E = \/2Trn3>flQ-*

= 2 wfLI volts.

The product, x = 27T/L, is of the dimension of resistance,

and is called the inductive reactance of the circuit; and the e.m.f.

of self-induction of the circuit, or the reactance voltage, is

and lags 90 behind the current, since the current is in phase
with the magnetic flux produced by the current, and the e.m.f.

lags 90 behind the magnetic flux. The e.m.f. lags 90 behind

the magnetic flux, as it is proportional to the rate of change in

flux; thus it is zero when the magnetism does not change, at its

maximum value, and a maximum when the flux changes quick-

est, which is where it passes through zero.



CHAPTER IV

VECTOR REPRESENTATION

16. While alternating waves can be, and frequently are, rep-

resented graphically in rectangular coordinates, with the time as

abscissae, and the instantaneous values of the wave as ordinates,

the best insight with regard to the mutual relation of different

alternating waves is given by their representation as vectors, in

the so-called crank diagram. A vector, equal in length to the

maximum value of the alternating wave, revolves at uniform speed

so as to make a complete revolution per period, and the pro-

jections of this revolving vector on the horizontal then denote

the instantaneous values of the wave.

Obviously, by this diagram only sine waves can be represented

or, in general, waves which are so near sine shape that they can be

represented by a sine.

Let, for instance, 01 represent in length the maximum value I of

a sine wave of current. Assuming then a vector, 01, to revolve,

left handed or in counter-clockwise direc-
o Ai A 2 -A

tion, so that it makes a complete revolution

during each cycle or period tQ . If then at

a certain moment of time, this vector

stands in position 01 \ (Fig. 8), the projec-

tion, OAi, of <5Z[ on the horizontal line OA
represents the instantaneous value of the

current at this moment. At a later mo-

ment, O/ has moved farther, to O/2, and the projection, OAz, of

O/2 on OA is the instantaneous value at this later moment. The

diagram so shows the instantaneous condition of the sine wave:

each sine wave reaches its maximum at the moment of time where

its revolving vector passes the horizontal, and reaches zero at

the moment where its revolving vector passes the vertical.

If now the time, t, and thus the angle, & = 10A = 2ir
-

(where

t = time of one complete cycle or period) ,Js
counted from the

moment of time where the revolving vector 01 in Fig. 8 stands in

position O/i, then this sine wave would be represented by

i = I cos (# #1),

19
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where $1 = I\OA may be called the phase of the wave, and

/ = O/i the amplitude or intensity.

At the time, # =
$1, that is, the angle, $1, after the moment of

time represented by position OIi, i I, and OI passes through
the horizontal OA, that is, has its maximum value. The phase

#1 thus is the angle representing the time, t\ t
at which the wave

reaches its maximum value.

If the time, t, and thus the angle, #, are counted from the

moment at which the revolving vector reaches position 0/2, the

equation of the wave would be

i = I cos (# # 2),

and #2 = IiOA is the phase.

17. When dealing with one wave only, it obviously is imma-
terial from which moment of time as zero value the time and thus

the angle, #, is counted. That is, the phase $1 or $ 2may be chosen

anything desired. As soon, however, as several alternating waves

enter the diagram, it is obvious that for all the waves of the

same diagram the time must be counted from the same moment,
and by choosing the phase angle of one of the waves, that of the

others is determined.

Thus, let / = the maximum value of a current, lagging behind

the maximum value of voltage E by time t\,

A that is, angle of phase difference #1 = 2 TT

to

'The phase of the voltage, E, then may be

chosen as a, and the voltage represented, in

Fig. 9, by vector OE = E at phase angle

EOA = a. As the current lags by phase
difference #1, the phase of the current then

must be fi
= a + $1, and the current is represented, in Fig. 9,

by vector 01 =
/, under phase angle /?

= 10A.
The equations of voltage and current then are:

e = E cos (# a)

i = I cos (#
-

/?)

= / COS (tf
- a -

#1).

The voltage OE = E, as the first vector, may be plotted in any
desired direction, for instance, under angle a! = EOA in Fig.

10. The current then would be represented by 01 =
/, under
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phase angle (3

f = (a
f

$])= 10A, and the equations of

voltage and current would be:

e = E cos (# + ')

i = I cos (tf -f ')

= / cos (tf + a' - tfi).

Or, the current 01 = I may be chosen as the first vector, in

Fig. 9, under phase angle (3
= 10A, and the

voltage then would have the phase angle

a =
/3 $1, and be represented by vector

OE = E, and the equations would be:

i = I cos (# /?)

e = E cos (# a)
= E cos (tf

-
/3 + #1).

FIG. 10.

In this vector representation, a current lagging behind its

voltage makes a greater angle with the horizontal, OA, that is,

the current vector, 01 j lags behind the voltage vector, OE, in the

direction of rotation, thus passes the zero line, OA, of maximum

value, at a later time.

Inversely, a leading current passes the zero line OA earlier,

that is, is ahead in the direction of rotation.

Instead of the maximum value of the rotating vector, the

effective value is commonly used, especially where- the instan-

taneous values are not required, but the diagram intended to

represent the relations of the dif-

ferent alternating waves to each

other. With the length of the

rotating vector equal to the effect-

ive value of the alternating wave,
the maximum value obviously is

->-
A \/2 times the length of the vector,

and the instantaneous values are

\/2 times the projections of the

vectors on the horizontal.

18. To combine different sine

waves, their graphical representations as vectors, are combined

by the parallelogram law.

If, for instance, two sine waves, OEi, and OEz (Fig. 11), are

superposed as, for instance, two e.m.fs. acting in the same cir-

cuit their resultant wave is represented by OE, the diagonal of a

parallelogram with OEi and O#2 as sides. As the projection of

FIG. 11.
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the diagonal of a parallelogram equals the sum of the projections
of the sides, during the rotation of the parallelogram OEiEE2 ,

the projection of OE on the horizontal OA, that is, the instan-

taneous value of the wave represented by vector OE, is equal to

the sum of the projection of the two sides OEi and OEz, that is,

the sum of the instantaneous values of the component vectors

0#i and OEz.

From the foregoing considerations we have the conclusions:

The sine wave is represented graphically in the crank diagram,

by a vector, which by its length, OE, denotes the intensity, and

by its amplitude, AOE, the phase, of the sine wave.

Sine waves are combined or resolved graphically, in vector

representation, by the law of the parallelogram or the polygon of

sine waves.

KirchhofFs laws now assume, for alternating sine waves, the

form:

(a) The resultant of all the e.m.fs. in a closed circuit, as found

by the parallelogram of sine waves, is zero if the counter e.m.fs.

of resistance and of reactance are included.

(b) The resultant of all the currents toward a distributing

point, as found by the parallelogram of sine waves, is zero.

The power equation expressed graphically is as follows:

The power of an alternating-current circuit is represented in

vector representation by the product of the current, /, into the

projection of the e.m.f., E, upon the current, or by the e.m.f., E,

into the projection of the current, I,

_ EJ_ JE O upon the e.m.f., or by IE cos 0, where
= angle of phase displacement.

19. Suppose, as an example, that in

' a line having the resistance, r, and the

reactance, x = 2 irfL where / = fre-

quency and L = inductance there

p 12
exists a current of / amp., the line

being connected to a non-inductive

circuit operating at a voltage of E volts. What will be the

voltage required at the generator end of the line?

In the vector diagram, Fig. 12, let the phase of the current be

assumed as the initial or zero line, 01. Since the receiving cir-

cuit is non-inductive, the current is in phase with its voltage.

Hence the voltage, E, at the end of the line, impressed upon the

receiving circuit, is represented by a vector, OE. To overcome
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the resistance, r, of the line, a voltage, Ir, is required in phase

with the current, represented by OEi in the diagram. The
inductive reactance of the line generates an e.m.f. which is pro-

portional to the current, /, and the reactance, x, and lags a

quarter of a period, or 90, behind the current. To overcome

this counter e.m.f. of inductive reactance, a voltage of the value

Ix is required, in phase 90 ahead of the current, hence represented

by vector OEz* Thus resistance consumes voltage in phase,

and reactance voltage 90 ahead of the current. The voltage of

the generator, EQ, has to give the three voltages E, Ei, E2 ,
hence

it is determined as their resultant. Combining by the parallelo-

gram law, OEi and OEz, give OE3 ,
the voltage required to over-

come the impedance of the line, and similarly OEz and OE give

OEo, the voltage required at the generator side of the line, to

yield the voltage, E, at the receiving end of the line. Algebraic-

ally, we get from Fig. 12

E = V(E + /r)

or

E = VE 2 -
(Ix)

2 - Ir.

In this example we have considered the voltage consumed by
the resistance (in phase with the current) and the voltage con-

sumed by the reactance (90 ahead of the current) as parts, or

components, of the impressed volt-

age, EQ, and have derived EQ by
combining Er, Ex, and E.

20. We may, however, introduce

the effect of the inductive react-

ance directly as an e.m.f., Er

%, the

counter e.m.f. of inductive react-

ance =
Ix, and lagging 90 behind

the current; and the e.m.f. con-

sumed by the resistance as a

counter e.m.f., E\ =Ir, in opposition to the current, as is done

in Fig. 13; and combine the three voltages EQ, E'i, E'%, to form

a resultant voltage E, which is left at the end of the line. E' \

and Ef

2 combine to form E's, the counter e.m.f. of impedance;
and since E'z and EQ must combine to form E, EQ is found as

the side of a parallelogram, OE EE' 3 ,
whose other side, OE'z,

and diagonal OE, are given.

Or we. may say (Fig. 14), that to overcome the counter e.m.f.
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of impedance, OE's, of the line, the component, OEs, of the

impressed voltage is required which, with the other component,

OE, must give the impressed voltage, OE .

As shown, we can represent the voltages produced in a circuit

in two ways either as counter e.m.fs., which combine with the

impressed voltage, or as parts, or components, of the impressed

voltage, in the latter case being of opposite phase. According
to the nature of the problem, either the one or the other way may
be preferable.

E2

Ei

FIG. 14.

As an example, the voltage consumed by the resistance is Ir,

and in phase with the current; the counter e.m.f. of resistance is

in opposition to the current. The voltage consumed by the

reactance is Ix, and 90 ahead of the current, while the counter

e.m.f. of reactance is 90 behind the current; so that, if, in Fig.

15, OI is the current.

OEi = voltage consumed by resistance,

OE\ = counter e.m.f. of resistance,

OE<z = voltage consumed by inductive reactance,
= counter e.m.f. of inductive reactance,
= voltage consumed by impedance,
= counter e.m.f. of impedance.

Obviously, these counter e.m.fs. are different from, for instance,

the counter e.m.f. of a synchronous motor, in so far as they have

no independent existence, but exist only through, and as long as

the current exists. In this respect they are analogous to the

opposing force of friction in mechanics.

21. Coming back to the equation found for the voltage at the

generator end of the line,
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we find, as the drop of potential in the line,

e = EQ
- E = V(E Ir)

2 + (Ix)
2 - E.

This is different from, and less than, the e.m.f. of impedance,

E3
= Iz = iVr2 + x 2

.

Hence it is wrong to calculate the drop of potential in a circuit

by multiplying the current by the impedance; and the drop of

potential in the line depends, with a given current fed over the

line into a non-inductive circuit, not only upon the constants of

the line, r and x, but also upon the voltage, E, at the end of line,

as can readily be seen from the diagrams.
22. If the receiver circuit is inductive, that is, if the current, /,

lags behind the voltage, E, by an angle, 6, and we choose again as

the zero line, the current 01 (Fig. 16), the voltage, OE }
is ahead of

\

FIG. 16. FIG. 17.

the current by the angle, 6. The voltage consumed by the resist-

ance, Ir, is in phase with the current, and represented by OEi
the voltage consumed by the reactance, Ix, is 90 ahead of the

current, and represented by OE%. Combining OE, OEi, and

OEz, we get OEQ ,
the voltage required at the generator end of the

line. Comparing Fig. 16 with Fig. 12, we see that in the former

OE is larger ;
or conversely, if EQ is the same, E will be less with

an inductive load. In other words, the drop of potential in an

inductive line is greater if the receiving circuit is inductive than

if it is non-inductive. From Fig. 16,

E = V(E cos + Ir)
2 + (E sin + Ix)

2
.

If, however, the current in the receiving circuit is leading, as
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is the case when feeding condensers or synchronous motors whose
counter e.m.f. is larger than the impressed voltage, then the

voltage will be represented, in Fig. 17, by a vector, OE, lagging
behind the current, Q/, by the angle of lead, 0''; and in this case

we get, by combining OE with OEi, in phase with the current,

and OEz, 90 ahead of the current, the generator voltage, OEQ ,

which in this case is not only less than in Fig. 16 and in Fig. 12,

but may be even less than E', that is, the voltage rises in the line.

In other words, in a circuit with leading current, the inductive

reactance of the line raises the voltage, so that the drop of voltage
is less than with a non-inductive load, or may even be negative,

and the voltage at the generator lower than at the other end of

the line.

These diagrams, Figs. 12 to 17, can be considered vector dia-

grams of an alternating-current generator of a generated e.m.f.,

EQ, a resistance voltage, E\ =
Ir, a reactance voltage, E% = Ix,

and a difference of potential, E }
at the alternator terminals; and

we see, in this case, that with the same generated e.m.f., with an

inductive load the potential difference at the alternator terminals

will be lower than with a non-inductive load, and that with a

non-inductive load it will be lower than when feeding into a cir-

cuit with leading current, as for instance, a synchronous motor

circuit under the circumstances stated above.

23. As a further example, we may consider the diagram of an

alternating-current transformer, feeding through its secondary
circuit an inductive load.

For simplicity, we may neglect here the magnetic hysteresis,

the effect of which will be fully treated in a separate chapter on

this subject.

Let the time be counted from the moment when the magnetic
flux is zero and rising. The magnetic flux then passes its maxi-

mum at the time $ = 90, and the phase of the magnetic flux

thus is & = 90, the flux thus represented by the vector 0<J> in

Fig. 18, vertically downward. The e.m.f. generated by this mag-
netic flux in the secondary circuit, EI, lags 90 behind the flux;

thus its vector, OEi, passes the zero line, OA 90, later than the

magnetic flux vector, or at the time # = 180; that is, the e.m.f.

generated in the secondary by the magnetic flux, OEi, has the

phase # = 180. The secondary current, /i, lags behind the

e.m.f., EI, by an angle, 0i, which is determined by the resistance

and inductive reactance of the secondary circuit; that is, by the
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load in the secondary circuit, and is represented in the diagram by
the vector, 0Fi, of phase 180 + 61.

Instead of the secondary current, /i, we plot, however, the

secondary m.m.f., FI =
wi/i, where n\ is the number of secondary

turns, and FI is given in ampere-turns. This makes us inde-

pendent of the ratio of transformation.

FIG. 18.

From the secondary e.m.f., E\, we get the flux, <i>, required to

induce this e.m.f., from the equation

Ei = \2irai/* 10
~ 8

;

where

EI = secondary e.m.f., in effective volts,

/ = frequency, in cycles per second,

n\ = number of secondary turns,

$ = maximum value of magnetic flux, in lines of magnetic
force.

The derivation of this equation has been given in a preceding

chapter.

This magnetic flux, <3>,
is represented by a vector, 0<, 90 in

phase, and to produce it a m.m.f., F, is required, which is de-

termined by the magnetic characteristic of the iron and the

section and length of the magnetic circuit of the transformer;

this m.m.f. is in phase with the flux, <, and is represented by the

vector, OF, in effective ampere-turns.
The effect of hysteresis, neglected at present, is to shift OF

ahead of 0$, by an angle, a, the angle of hysteretic lead. (See

Chapter on Hysteresis.)

This m.m.f., F, is the resultant of the secondary m.m.f., F\,
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and the primary m.m.f., F ;
or graphically, OF is the diagonal of

a parallelogram with OFi and OF as sides. OF\ and OF being

known, we find OFo, the primary ampere-turns, and therefrom

and the number of primary turns, nQ) the primary current, IQ =
pi

i which corresponds to the secondary, Ii.n Q

To overcome the resistance, r
,
of the primary coil, a voltage,

j r
= JVo, is required, in phase with the current, Jo, and repre-

sented by the vector, OEr .

To overcome the reactance, XQ
= 2irfL ,

of the primary coil, a

voltage, Ex = loXo, is required, 90 ahead of the current, I
,
and

represented by vector, OEX .

The resultant magnetic flux, <l>, which generates in the second-

ary coil the e.m.f., Ei, generates in the primary coil an e.m.f. pro-

portional to by the ratio of turns and in phase with or,

which is represented by the vector, OE'i. To overcome this

counter e.m.f., E'it a primary voltage, Eit is required, equal but

in phase opposition to E'i, and represented by the vector, OEi.

The primary impressed e.m.f., E ,
must thus consist of the

three components OE
i}
OEr ,

and OEXj and is, therefore, their

resultant OEQ ,
while the difference of phase in the primary cir-

cuit is found to be

24. Thus, in Figs. 18 to 20, the diagram of a transformer is

drawn for the same secondary e.m.f., E\, secondary current, I\ t

and therefore secondary m.m.f., F\ t
but with different conditions

of secondary phase displacement:
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In Fig. 18 the secondary current, /i, lags 60 behind the sec-

ondary e.m.f., EI.

In Fig. 19, the secondary current, /i, is in phase with the sec-

ondary e.m.f., EI.

In Fig. 20 the secondary current, /], leads by 60 the secondary

e.m.f., EI.

These diagrams show that lag of the current in the secondary
circuit increases and lead decreases the primary current and pri-

mary impressed e.m.f. required to produce in the secondary circuit

the same e.m.f. and current; or conversely, at a given primary

impressed e.m.f., E
,
the secondary e.m.f., E\, will be smaller

with an inductive, and larger with a condensive (leading current),

load than with a non-inductive load.

FIG. 20.

At the same time we see that a difference of phase existing in

the secondary circuit of a transformer reappears in the primary

circuit, somewhat decreased, if the current is leading, and slightly

increased if lagging in phase. Later we shall see that hysteresis
reduces the displacement in the primary circuit, so that, with an

excessive lag in the secondary circuit, the lag in the primary
circuit may be less than in the secondary.
A conclusion from the foregoing is that the transformer is not

suitable for producing currents of displaced phase, since primary
and secondary current are, except at very light loads, very nearly
in phase, or rather in opposition, to each other.



CHAPTER V

SYMBOLIC METHOD

25. The graphical method of representing alternating-current

phenomena affords the best means for deriving a clear insight

into the mutual relation of the different alternating sine waves

entering into the problem. For numerical calculation, however,
the graphical method is generally not well suited, owing to the

widely different magnitudes of the alternating sine waves rep-

resented in the same diagram, which make an exact diagram-
matic determination impossible. For instance, in the trans-

former diagrams (cf. Figs. 18-20), the different magnitudes have

numerical values in practice somewhat like the following: E\
= 100 volts, and I\ = 75 amp. For a non-inductive second-

ary load, as of incandescent lamps, the only reactance of the

secondary circuit thus is that of the secondary coil, or x\ = 0.08

ohms, giving a lag of 6\ = 3.6. We have also,

n\ = 30 turns.

n = 300 turns.

FI = 2250 ampere-turns.

F =100 ampere-turns.
Er

= 10 volts.

Ex = 60 volts.

Ei = 1000 volts.

FIG. 21. Vector diagram of transformer.

The corresponding diagram is shown in Fig. 21. Obviously,

no exact numerical values can be taken from a parallelogram
as flat as OFiFF ,

and from the combination of vectors of the

relative magnitudes 1 :6 :100.

Hence the importance of the graphical method consists not

30
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so much in its usefulness for practical calculation as to aid in

the simple understanding of the phenomena involved.

26. Sometimes we can calculate the numerical values trigo-

nometrically by means of the diagram. Usually, however, this

becomes too complicated, as will be seen by trying to calculate,
from the above transformer diagram, the ratio of transformation.

The primary m.rn.f. is given by the equation

+ F 1
* + 2FF 1 sin0 1 ,

an expression not well suited as a starting-point for further

calculation.

A method is therefore desirable which combines the exactness

of analytical calculation with the clearness of the graphical

representation.

27. We have seen that the alternating sine wave is repre-
sented in_ intensity, as well as phase, by a

vector, 07, which is determined analytically

by two numerical quantities the length, 07,
or intensity; and the amplitude, ^4.07, or

phase, 6, of the wave, 7.
o a

Instead of denoting the vector which repre- FIG. 22.

sents the sine wave in the polar diagram by
the polar coordinates, 7 and 6, we can represent it by its rec-

tangular coordinates, a and b (Fig. 22), where

a I cos 6 is the horizontal component,
6 = 7 sin is the vertical component of the sine wave.

This representation of the sine wave by its rectangular com-

ponents is very convenient, in so far as it avoids the use of

trigonometric functions in the combination or solution of sine

waves.

Since the rectangular components, a and b, are the horizontal

and the vertical projections of the vector representing the sine

wave, and the projection of the diagonal of a parallelogram is

equal to the sum of the projections of its sides, the combination
of sine waves by the parallelogram law is reduced to the addition,
or subtraction, of their rectangular components. That is:

Sine waves are combined, or resolved, by adding, or subtracting,

their rectangular components.
For instance, if a and b are the rectangular components of a

sine wave, 7, and a' and b' the components of another sine wave,
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I
f

(Fig. 23), their resultant sine wave, /o, has the rectangular

components a Q (a + a'), and b Q
=

(b + b').

To get from the rectangular components, a and 6, of a sine

wave its intensity, i, and phase, B, we may combine a and b by
the parallelogram, and derive

Hence we can analytically operate with sine waves, as with

forces in mechanics, by resolving them
into their rectangular components.

28. To distinguish, however, the

horizontal and the vertical com-

ponents of sine waves, so as not to be

confused in lengthier calculation, we

may mark, for instance, the vertical

components by a distinguishing index,

r the addition of an otherwise mean-

ingless symbol, as the letter j, and

M

FIG. 23.

thus represent the sine wave by the expression

which now has the meaning that a is the horizontal and b the

vertical component of the sine wave /, and that both components
are to be combined in the resultant wave of intensity,

Va 2 + b 2
,

and of phase, tan =
a

Similarly, a jb means a sine wave with a as horizontal,

and b as vertical, components, etc.

Obviously, the plus sign in the symbol, a + jb, does not

imply simple addition, since it connects heterogeneous quan-
tities horizontal and vertical components but implies com-

bination by the parallelogram law.

For the present, j is nothing but a distinguishing index, and

otherwise free for definition except that it is not an ordinary

number.

29. A wave of equal intensity, and differing in phase from the

wave, a + jb, by 180, or one-half period, is represented in
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polar coordinates by a vector of opposite direction, and denoted

by the symbolic expression, a jb. Or,

Multiplying the symbolic expression, a + jb, of a sine wave by
1 means reversing the wave, or rotating it through 180, or one-

half period.

A wave of equal intensity, but leading

a + jb by 90, or one-quarter period, has

(Fig. 24) the horizontal component, b,

and the vertical component, a, and is

represented symbolically by the expres- FIG. 24.

sion, ja b.

Multiplying, however, a + jb by j, we get

therefore, if we define the heretofore meaningless symbol, j t by
the condition,

J
2 = ~

1,

we have

j(a + jb) = ja
-

b;

hence,

Multiplying the symbolic expression, a + jb, of a sine wave by

j means rotating the wave through 90, or one-quarter period;

that is, leading the wave by one-quarter period.

Similarly

Multiplying by j means lagging the wave by one-quarter

period.

Since

it is

and

j is the imaginary unit, and the sine wave is represented by a

complex imaginary quantity or general number, a + jb.

As the imaginary unit, j, has no numerical meaning in the

system of ordinary numbers, this definition of j = \/ 1 does

not contradict its original introduction as a distinguishing index.

For the Algebra of Complex Quantities see Appendix I. For a

more complete discussion thereof see "Engineering Mathematics."

30. In the vector diagram, the sine wave is represented in

intensity as well as phase by one complex quantity,

a + jb,
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where a is the horizontal and 6 the vertical component of the

wave; the intensity is given by

* = Va 2 + 62
,

the phase by

tan =
a

and

a = i cos 6,

b = i sin 0;

hence the wave, a -f jb, can also be expressed by

i(cos 6 + j sin 0),

or, by substituting for cos 6 and sin 6 their exponential expres-

sions, we obtain

".>

Since we have seen that sine waves may be combined or

resolved by adding or subtracting their rectangular components,

consequently,

Sine waves may be combined or resolved by adding or subtracting

their complex algebraic expressions.

For instance, the sine waves,

a+jb
and

a' + jb',

combined give the sine wave,

I = (a + o') +j(6+-6').

It will thus be seen that the combination of sine waves is

reduced to the elementary algebra of complex quantities.

31. If / = i + ji
r

is a sine wave of alternating current, and

r is the resistance, the voltage consumed by the resistance is in

phase with the current, and equal to the product of the current

and resistance. Or
rl = ri + jri'.

If L is the inductance, and x = 27T/L the inductive react-

ance, the e.m.f. produced by the reactance, or the counter e.m.f.

1 In this representation of the sine wave by the exponential expression of

the complex quantity, the angle 6 necessarily must be expressed in radians,

and not in degrees, that is, with one complete revolution or cycle as 2 TT, or

180
with = 57.3 as unit.

TT
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of self-induction, is the product of the current and reactance,

and lags in phase 90 behind the current; it is, therefore, repre-

sented by the expression
-

jxl = -
jxi + xi

r
.

The voltage required to overcome the reactance is consequently
90 ahead of the current (or, as usually expressed, the current

lags 90 behind the e.m.f.), and represented by the expression

jxl = jxi xi'.

Hence, the voltage required to overcome the resistance, r, and

the reactance, x, is

that is,

Z = r + jx is the expression of the impedance of t he circuit

in complex quantities.

Hence, if 7 = i -j- ji' is the current, the voltage required to

overcome the impedance, Z = r + jx, is

E = ZI =
(r + jx) (i + ji')

hence, since j
2 = 1

E =
(ri

-
xi') +j(ri' + xi);

or, if E = e + je
f

is the impressed voltage and Z = r + jx the

impedance, the current through the circuit is

r = % _e+je\
Z r + jx'

or, multiplying numerator and denominator by (r jx) to

eliminate the imaginary from the denominator, we have

_ (e -f je') (r jx) _ er + e'x . e'r ex

r* + x 2
=

r 2 + x 2 + J
r* + x 2 '

or, if E = e + jd is the impressed voltage and I = i + ji' the

current in the circuit, its impedance is

E _ e+je' (e + jj) (i
-

ji') ei + e'i' . e'i - ei'
~~

32. If C is the capacity of a condenser in series in a circuit

in which exists a current I = i -{- ji', the voltage impressed upon

the terminals of the' condenser is E =
fri ,

90 behind the cur-
TTJ U



36 ALTERNATING-CURRENT PHENOMENA

rent; and may be represented by ,n or jxj, where
Z 7T/U

is the condensive reactance or condensance of thei o trtZ 7T/O

condenser.

Condensive reactance is of opposite sign to inductive reactance;

both may be combined in the name reactance.

"We therefore have the conclusion that

If r = resistance and L = inductance,

thus x = 2 TT/L
= inductive reactance.

If C = capacity, Xi = fn = condensive reactance,A 7T/O

Z = r + j(x Xi) is the impedance of the circuit.

Ohm's law is then re-established as follows:

E = ZI, 7 =
f, Z-|-. . . Z/ 1

The more general form gives not only the intensity of the wave
but also its phase, as expressed in complex quantities.

33. Since the combination of sine waves takes place by the

addition of their symbolic expressions, KirchhofTs laws are

now re-established in their original form:

(a) The sum of all the e.m.fs. acting in a closed circuit equals

zero, if they are expressed by complex quantities, and if the

resistance and reactance e.m.fs. are also considered as counter

e.m.fs.

(6) The sum of all the currents directed toward a distributing

point is zero, if the currents are expressed as complex quantities.

If a complex quantity equals zero, the real part as well as the

imaginary part must be zero individually; thus, if

a + jb =
0, a =

0, b = 0.

Resolving the e.m.fs. and currents in the expression of Kirch-

hoff's law, we find:

(a) The sum of the components, in any direction, of all the

e.m.fs. in a closed circuit equals zero, if the resistance and

reactance are represented as counter e.m.fs.

(6) The sum of the components, in any direction, of all the

currents at a distributing point equals zero.

Joule's law and the power equation do not give a simple

expression in complex quantities, since the effect or power is
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a quantity of double the frequency of the current or e.m.f.

wave, and therefore requires for its representation as a vector

a transition from single to double frequency, as will be shown in

Chapter XVI.
In what follows, complex vector quantities will always be

denoted by dotted capitals when not written out in full; abso-

lute quantities and real quantities by undotted letters.

34. Referring to the example given in the fourth chapter,

of a circuit supplied with a voltage, E, and a current, /, over an

inductive line, we can now represent the impedance of the line

by Z = r + jx, where r = resistance, x = reactance of the line,

and have thus as the voltage at the beginning of the line, or at

the generator, the expression

E Q
= E + ZI.

Assuming now again the current as the zero line, that is,

/ =
i, we have in general

EQ = E + ir + jix;

hence, with non-inductive load, or E =
e,

EQ =
(e + ir) + jix,

or e = V(e + ir)* + (IxY, tan =7r'
In a circuit with lagging current, that is, with leading e.m.f.,

E = e + je', and

E = e + je' + (r + jx)i

=
(e + ir) + j(e' + ix),

/ I ix
or e = V(e + ir)* + (e

f + ix)
2

,
tan =

7+^T
In a circuit with leading current, that is, with lagging e.m.f.,

E = e je', and

E = (e- je') + (r + jx)i

=
(e + ir)

-
j(e'

-
ix),

e' ix
or 6 = V(e+'ir)*+ (e'

-
ix)\ tan e Q

= -
e + ir

>

values which easily permit calculation.

35. When transferring from complex quantities to absolute

values, it must be kept in mind that:

The absolute value of a product or a ratio of complex quanti-

ties is the product or ratio of their absolute values.
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The phase angle of a product or a ratio of complex quantities

is the sum or difference of their phase angles.

That is, if

A ' = a' + jV = a(cos a + j sin a)

B = V + jb" = 6(cos + jf
sin 0)

C = c' + jc" = c(cos 7 + j sin 7)

. ab
the absolute value of -77- is given by > and its phase angle byo c

a -j- 7, that is, it is

AB ab

-g-
=

^[cos (a + -
7) + j sin (a + -

7)],

where

a = Va/2 + a" 2

c = Vc/2 + c//2

are the absolute values of A, B and C.

This rule frequently simplifies greatly the derivation of the

absolute value and phase angle, from a complicated complex

expression.



CHAPTER VI

TOPOGRAPHIC METHOD

36. In the representation of alternating sine waves by vectors,

a certain ambiguity exists, in so far as one and the same quantity

voltage, for instance can be represented by two vectors of

opposite direction, according as to whether the e.m.f. is considered

as a part of the impressed voltage or as a counter e.m.f. This is

analogous to the distinction between action and reaction in

mechanics.

Further, it is obvious that if in the circuit of a generator, G

(Fig. 25), the current in the direction from terminal A over re-

sistance R to terminal B is represented by a vector, 01 (Fig. 26),

or by 7 = i + ji', the same current can be considered as being

FIG. 25. FIG. 26.

in the opposite direction, from terminal B to terminal A in op-

posite phase, and therefore represented by a vector, 01 1 (Fig. 26),

or by 1 1
= i ji' .

Or, if the difference of potential from terminal B to terminal

A is denoted by the E = e + je
f

,
the difference of potential from

A to B is Ei = e je'.

Hence, in dealing with alternating-current sine waves it is

necessary to consider them in their proper direction with regard

to the circuit. Especially in more complicated circuits, as inter-

linked polyphase systems, careful attention has to be paid to

this point.

37. Let, for instance, in Fig, 27, an interlinked three-phase

system be represented diagrammatically as consisting of three

39
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voltages, of equal intensity, differing in phase by one-third of a

period. Let the voltages in the direction from the common con-

nection, 0, of the three branch circuits to the terminals, AI, A 2 ,

A 3 ,
be represented by EI, E2 ,

E3 . Then the difference of poten-
tial from A 2 to A i is E2 EI, since the two voltages, EI and E 2 ,

are connected in circuit between the terminals, AI and A 2 ,
in the

direction AI A 2 ;
that is, the one, E2 ,

in the direction, OA 2 ,

from the common connection to terminal, the other, EI, in the

opposite direction, AiO, from the terminal to common connec-

tion, and represented by EI. Conversely, the difference of

potential from AI to A 2 is EI E2 .

It is then convenient to go still a step farther, and drop the

vector line altogether in the diagrammatic representation; that

is, denote the sine wave by a point only, the end of the corre-

sponding vector.

Looking at this from a different point of view, it means that

we choose one point of the system for instance, the common

OE l

O
Ex

FIG. 27. FIG. 28.

connection, or neutral as a zero point, or point of zero poten-

tial, and represent the potentials of all the other points of the

circuit by points in the diagram, such that their distances from

the zero point give the intensity, their amplitude the phase of

the difference of potential of the respective point with regard to

the zero point; and their distance and amplitude with regard to

other points of the diagram, their difference of potential from

these points in intensity and phase.

Thus, for example, in an interlinked three-phase system with

three voltages of equal intensity, and differing in phase by one-

third of a period, we may choose the common connection of the

star-connected generator as the zero point, and represent, in

Fig. 28, one of the voltages, or the potential at one of the three-
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phase terminals, by point E\. The potentials at the two other

terminals will then
k
be given by the points E% and E s ,

which have

the same distance from as EI, and are equidistant from E\ and

from each other.

The difference of potential between any pair of terminals, for

instance, EI and E%, is then thp distance ^2^1, or EiE%, according

to the direction considered.

38. If now the three branches, OEi, OE2 and OEl, of the

three-phase system are loaded equally by three currents equal
in intensity and in difference of phase against their voltages,

Eoa

BALANCED THREE-PHASE SYSTEM1

NON-INDUCTIVE LOAD

FIG. 29. FIG. 30.

these currents are represented in Fig. 29 by the vectors 0/i =
012 = 01 3 = J, lagging behind the voltages by angles E\0l\ =
#20/2 = #30/3 = 8.

Let the three-phase circuit be supplied over a line of impedance,
Zi =

7*1 + jxi, from a generator of internal impedance, ZQ
=

XQ + JXQ .

In phase OE\ the voltage consumed by resistance r\ is repre-
sented by thejdistance, EiEJ =

Iri, in phase, that is, parallel

with current 01 1. The voltage consumed by reactance x\ is

represented by E^Ei 11 =
Ixi, 90 ahead of current 0/i. The

same applies to the other two phases, and it thus follows that to

produce the voltage triangle, EiE2Es ,
at the terminals of the

consumer's circuit, the voltage triangle, EinE2
llE3

n
,
is required

at the generator terminals.
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Repeating the same operation for the internal impedance of

the generator, we get EllEni = Jr
,
and parallel to 0/i, EU1E =

Ix
,
and 90 ahead of 0/i, and thus as triangle of (nominal) gen-

erated e.m.fs. of the generator, EiEzQE s .

In Fig. 29 the diagram is shown for 45 lag, in Fig. 30 for non-

inductive load, and in Fig. 31 for 45 lead of the currents with

regard to their voltages.

As seen, the generated e.m.f. and thus the generator excitation

with lagging current must be higher, and with leading current

lower, than at non-inductive load, or conversely with the same

generator excitation, that is, the same internal generator e.m.f.

SINGLE-PHASE CIRCUIT
60 LAG

CABLE OF DISTRIBUTED
CAPACITY AND RESISTANCE

FIG. 32.

triangle, EiQE^Ez
Q
,
the voltages at the receiver's circuit, E\, Ez ,

Es, fall off more with lagging, and less with leading current, than

with non-inductive load.

39. As a further example may be considered the case of a

single-phase alternating-current circuit supplied over a cable

containing resistance and distributed capacity.

Let, in Fig. 32, the potential midway between the two ter-

minals be assumed as zero point 0. The two terminal voltages

at the receiver circuit are then represented by the points E and

E 1

, equidistant from and opposite each other, and the two cur-

rents at the terminals are represented by the points / and 7 1
,

equidistant from and opposite each other, and under angle

with E and E 1

respectively.

Considering first an element of the line or cable next to the

receiver circuit. In this voltage, EEi, is consumed byjthe re-

sistance of the line element, in phase with the current, O/, and

proportional thereto, and a current, 77~i, consumed by the
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capacity, as charging current of the line element, 90 ahead in

phase of the voltage, OE, and proportional thereto, so that at the

generator end of this cable element current and voltage are 01\
and OEi respectively.

Passing now to the next cable element we have again a voltage,

EiEzj proportional to and in phase with the current, O/i, and a

current, /i/2, proportional to and 90 ahead of the voltage, OEi,
and thus passing from element to element along the cable to the

generator, we get curves of voltages, e and e 1

,
and curves of cur-

rents, i and i
l

,
which can be called the topographical circuit

characteristics, and which correspond to each other, point for

point, until the generator terminal voltages, OEo and OEo 1

,
and

the generator currents, O/o and O/o 1

,
are reached.

Again, adding EQEn = 7 r and parallel to OTi and EnE =
IQx and 90 ahead of 0/

, gives the (nominal) generated e.m.f.

of the generator OE, where ZQ
= r + jxQ

= internal impedance
of the generator.

In Fig. 32 is shown the circuit characteristics for 60 lag of

a cable containing only resistance and capacity.

Obviously by graphical construction the circuit characteristics

appear more or less as broken lines, due to the necessity of using
finite line elements, while in reality they are smooth curves when
calculated by the differential method, as explained in Section

III of
"
Theory and Calculation of Transient Electric Phenomena

and Oscillations."

40. As further example may be considered a three-phase cir-

cuit supplied over a long-distance transmission line of distrib-

uted capacity, self-induction, resistance, and leakage.

Let, in Fig. 33, OE 1} OEz, OEs = three-phase voltages at re-

ceiver circuit, equidistant from each other and = E.

Let O/i, 0/2, 0/3 = three-phase currents in the receiver cir-

cuit equidistant from each other and =
/, and making with E

the phase angle, 0.

Considering again as in 3 the transmission line, element by
element, we have in every element a voltage, EiEi 1

,
consumed

by the resistance in phase with the current, O/i, and proportional

thereto, and a voltage, Ei1
, Ei

li
,
consumed by the reactance of

the line element, 90 ahead of the current, O/i, and proportional
thereto.

In the same line element we have a current, /i/i
1

,
in phase

with the voltage, OEi, and proportional thereto, representing
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the loss of current by leakage, dielectric hysteresis, etc., and a

current, /i
1
/i

11
, 90 ahead of the voltage, OEi, and proportional

thereto, the charging current of the line element as condenser;
and in this manner passing along the line, element by element,
we ultimately reach the generator terminal voltages, EI, E2 , EZ,

10

THREE PHASE CIRCUIT
60 LAG

TRANSMISSION LINE
WITH DISTRIBUTED

CAPACITY, INDUCTANCE
RESISTANCE. AND LEAKAGE

FIG. 33.

TRANSMISSION
WITH DISTRIBUTED

CAPACITY, INDUCTANCE
RESISTANCE AND LEAKAGE

90 LAG

FIG. 34.

and generator currents, /i, 72 , /s, over the topographical char-

acteristics of voltage, ei, 2, e3 ,
and of current, i\, iz, is, as shown

in Fig. 33.

The circuit characteristics of current, i, and of voltage, e, cor-

respond to each other, point for point, the one giving the current

and the other the voltage in the line element.

Only the circuit characteristics of the first phase are shown,
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as ei and i\. As seen, passing from the receiving end toward

the generator end of the line, potential and current alternately

rise and fall, while their phase angle changes periodically be-

tween lag and lead.

41. More markedly this is shown in Fig. 34, the topographic
circuit characteristic of one of the lines with 90 lag in the receiver

circuit. Corresponding points of the two characteristics, e and

i, are marked by corresponding figures to 16, representing equi-

distant points of the line. The values of voltage, current and

TRANSMISSION LINE

WITH DISTRIBUTED CAPACITY, INDUCTANCE
RESISTANCE AND LEAKAGE

FIG. 35.

their difference of phase are plotted in Fig. 35 in rectangular

coordinates with the distance as abscissas, counting from the

receiving circuit toward the generator. As seen from Fig. 35,

voltage and current periodically but alternately rise and fall,

a maximum of one approximately coinciding with a minimum
of the other, and with a point of zero phase displacement. The

phase angle between current and e.m.f. changes from 90 lag

to 72 lead, 44 lag, 34 lead, etc., gradually decreasing in the

amplitude of its variation.



CHAPTER VII

POLAR COORDINATES AND POLAR DIAGRAMS

42. The graphic representation of alternating waves in rec-

tangular coordinates, with the time as abscissae and the instan-

taneous values as ordinates, gives a picture of their wave structure,

as shown in Figs. 1 to 5. It does not, however, show their

periodic character as well as the representation in polar coordi-

nates, with the time as the angle or the amplitude one complete

period being represented by one revolution and the instan-

taneous values as radius vectors; the polar coordinate system,
in which the independent variable, the angle, is periodic, obvi-

ously lends itself better to the representation of periodic functions,

as alternating waves.

Thus the two waves of Figs. 2 and 3 are represented in polar

coordinates in Figs. 36 and 37 as closed characteristic curves,

which, by their intersection with the radius

vector, give the instantaneous value of the

wave, corresponding to the time represented

by the amplitude or angle of the radius vector.

These instantaneous values are positive if in

the direction of the radius vector, and negative
if in opposition. Hence the two half-waves

. in Fig. 2 are represented by the same polar

characteristic curve, which is traversed by the

point of intersection of the radius vector twice
T71 _ OC

per period once in the direction of the vector,

giving the positive half-wave, and once in opposition to the

vector, giving the negative half-wave. In Figs. 3 and 37

where the two half-waves are different, they give different polar

characteristics.

43. The sine wave, Fig. 1, is represented in polar coordinates

by one circle, as shown in Fig. 38. The diameter of the char-

acteristic curve of the sine wave, / = OC, represents the intensity

of the wave; and the amplitude of the diameter OC, ^C 0o = AOC,
is the phase of the wave, which, therefore, is represented analytic-

ally by the function

i = I cos (B
-

60),

46
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where 6 = 2 TT is the instantaneous value of the amplitude
*o

corresponding to the instantaneous value, i, of the wave.

The instantaneous values are cut out on the movable radius

vector by its intersection with the characteristic circle. Thus,

for instance, at the amplitude, AOBi = 61 = ^TT (Fig. 38), the
to

instantaneous value is OB'-
}
at the amplitude, AOB 2

= 62 =
*

,

2 ir^j the instantaneous value is OB", and negative, since in
to

opposition to the radius vector, OB%.

The angle, 0, so represents the time, and increasing time is

represented by an increase of angle 6 in counter-clockwise rota-

FIG. 37.

tion. That is, the positive direction, or increase of time, is

chosen as counter-clockwise rotation, in conformity with general

custom.

The characteristic circle of the alternating sine wave is deter-

mined by the length of its diameter the intensity of the wave;
and by the amplitude of the diameter the phase of the wave.

Hence wherever the integral value of the wave is considered

alone, and not the instantaneous values, the characteristic circle

may be omitted altogether, and the wave represented in intensity

and in phase by the diameter of the characteristic circle.

Thus, in polar coordinates, the alternating wave may be repre-

sented in intensity and phase by the length and direction of a

vector,_OC, Fig. 38, and its analytical expression would then be

c = OC cos (0
-

00).

This leads to a second vector representation of alternating
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waves, differing from the crank diagram discussed in Chapter IV.

It may be called the time diagram or polar diagram, and is used

to a considerable extent in the literature, thus must be familiar

to the engineer, though in the following we shall in graphic

representation and in the symbolic representation based thereon,

use the crank diagram of Chapters IV and V.

In the time diagram as well as in the crank diagram, instead

of the maximum value of the wave, the effective value, or square
root of mean square, may be used as the vector, which is more
convenient

;
and the maximum value is then \/2 times the vector

OC, so that the instantaneous values, when taken from the dia-

gram, have to be increased by the factor \/2.

Thus, the wave,

b = B cos 2irf(t
-

ti)

= B cos (0
-

0i),

A is, in Fig. 39, represented by
T>

vector OB =

c
of phase
and the wave,

FIG. 39.

is, in Fig. 39, represented by

AOB =
0!j

c = C cos2irf(t + t z)

= C cos (0 -f 2)

vector OC =

of phase

V2
AOC = -

2 .

The former is said to lag by angle 0i, the latter to lead by angle

02, with regard to the zero position.

The wave b lags by angle (0i + 2) behind wave c, or c leads

b by angle (0i -f 2).

44. To combine different sine waves, their graphical repre-

sentations, or vectors, are combined by the parallelogram law.

From the foregoing considerations we have the conclusions:

The sine wave is represented graphically in polar coordinates

by a vector, which by its length OC, denotes the intensity, and by
its amplitude, AOC, the phase, of the sine wave.

Sine waves are combined or resolved graphically, in polar

coordinates, by the law of the parallelogram or the polygon of

sine waves. (Fig. 40.)
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Kirchhoffs laws now assume, for alternating sine waves, the

form:

(a) The resultant of all the e.m.fs. in a closed circuit, as found

by the parallelogram of sine waves, is zero if the counter e.m.fs.

of resistance and of reactance are included.

(b) The resultant of all the

currents toward a distributing

point, as found by the parallelo-

gram of sine waves, is zero.

The power equation expressed

graphically is as follows:

The power of an alternating-

current circuit is represented in

polar coordinates by the product
of the current, /, into the projec-

tion of the e.m.f., E, upon the

current, or by the e.m.f., E, into the projection of the current,

/, upon the e.m.f., or by IE cos 6, where 9 = angle of time-

phase displacement.

45. The instances represented by the vector representation of

the crank diagram in Chapter IV as Figs. 16, 17, 18, 19, 20,

FIG. 40.

FIG. 41. FIG. 42.

then appear in the vector representation of the time diagram or

polar coordinate diagram, in the form of Figs. 41, 42, 43,

44, 45.

These figures are the reverse, or mirror image of each other.

That is, the crank diagrams, turned around the horizontal (or

any other axis) ,
so as they would be seen in a mirror, are the time

diagrams, and inversely.
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The polar diagram, Fig. 46, of a current:

i = I cos (&
-

&)

represented by vector 07,

FIG. 43.

FIG. 45.

lagging behind the voltage :

e = E cos (# a)

represented by vector OE,

by angle

0i = ft
- a

then means:

FIG. 46.
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The voltage e reaches its maximum at the time t\ t
which is

represented by angle a = 2 ir-~> where t Q
= period, and the cur-

to

rent, i, reaches its maximum at the time tZ) which is represented by

angle = 2 TT~, and since /5 > a, the current reaches its maximum
to

at a later time than the voltage, that is, lags behind the voltage,

and the lag of the current behind the voltage is the difference

between the times of their maxima, /3 and a, in angular measure,

that is, is

At any moment of time t, represented by angle 6 = 2 TT > the in-
fo

stantaneous values of current and voltage, i and e, are the projec-

tions of 01 and OE on the time radius OX drawn under angle

AOX = B.

The crank diagram corresponding to the time diagram Fig.

46 is shown in Fig. 47. It means: The vectors 01 and OE,

representing the current and the voltage respectively, rotate

synchronously, and by their projections on the horizontal OA
represent the instantaneous values of current and voltage.

Angle 10A =
/3 being larger than angle EOA = a, the current

vector 01 passes its maximum, in position OA, later than the

voltage vector OE, that is, the current lags behind the voltage,

by the difference of time corresponding to the passage of the

current and voltage vectors through their maxima, in the direc-

tion OA, that is, by the time angle 0i = /3 a.

A polar diagram, Fig. 46, with the current, 01, lagging behind

the voltage, OE, by the angle, 0i, thus considered as crank dia-

gram would represent the current leading the voltage by the

angle, 0i, and a crank diagram, Fig. 47, with the current lagging

behind the voltage by the angle, 0i, would as polar diagram

represent a current leading the voltage by the angle, 0i.

46. The main difference in appearance between the crank dia-

gram and the polar diagram therefore is that, with the same

direction of rotation, lag in the one diagram is represented in the

same manner as lead in the other diagram, and inversely. Or,

a representation by the crank diagram looks like a representation

by the polar diagram, with reversed direction of rotation, and

vice versa. Or, the one diagram is the image of the other and can



52 ALTERNATING-CURRENT PHENOMENA

be transformed into it by reversing right and left, or top and

bottom. So the crank diagram, Fig. 47, is the image of the polar

diagram, Fig. 46.

In symbolic representation, based upon the crank diagram, the

impedance was denoted by
Z = r + jx,

where x = inductive reactance.

In the polar diagram, the impedance thus is denoted by:

Z = r - jx

since the latter is the mirror image of the crank diagram, that is,

differs from it symbolically by the interchange of + j and j.

A treatise written in the symbolic repre-

sentation by the polar diagram, thus can be

translated to the representation by the crank

diagram, and inversely, by simply reversing

the signs of all imaginary quantities, that is,

considering the signs of all terms with j

FIG. 47. changed
A graphical representation in the polar dia-

gram can be considered as a graphic representation in the crank

diagram, with clockwise or right-handed rotation, and inversely.

Thus, for the engineer familiar with one representation only, but

less familiar with the other, the most convenient way when meet-

ing with a treatise in the, to him, unfamiliar representation is to

consider all the diagrams as clockwise and all the signs of j reversed.

In conformity with the recommendation of the Turin Congress
however ill considered this may appear to many engineers in

the following the crank diagram will be used, and wherever

conditions require the time diagram, the latter be translated to

the crank diagram. It is not possible to entirely avoid the time

diagram, since the crank diagram is more limited in its application.

47. The crank diagram offers the disadvantage, that it can be

applied to sine waves only, while the polar diagram permits the

construction of the curve of waves of any shapes, as those in

Figs. 36 and 37.

In most cases, this objection is not serious, and in the diagram-
matic and symbolic representation, the alternating quantities

can be assumed as sine waves, that is, the general wave repre-

sented by the equivalent sine wave, that is, the sine wave of the

same effective value as the general wave.
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The transformation of the general wave into the equivalent

sine wave, however, has to be carried out algebraically in the

crank diagram, while the polar diagram permits a graphical

transformation of the general wave into the equivalent sine wave.

Let Fig. 48 represent a general alternating wave. An element

BiOB2 of this wave then has the area

dA = r

-Y>
and the total area of the polar

curve is

- n
Jo :

A =

The effective value of the wave is

R = \/mean square

hence,
FIG. 48.

R< -ifr*de = A.

The area of the polar curve of the general periodic wave, as

measured by planimeter, therefore equals the area of a circle

with the effective value of the wave as radius.

The effective value of the equivalent sine wave therefore is

the radius of a circle having the same area as the general wave,
in polar coordinates:

IIR = A -

The diameter of the general polar circle, therefore, is

And the phase of the equivalent sine wave, or the direction of

the diameter of its polar circle, is the vector bisecting the area

of the general wave, in polar coordinates.

The transformation of the general alternating wave into the

equivalent sine wave, therefore, is carried out by measuring the

area of the general wave in polar coordinates, and drawing the

sine wave circle of half this area.



SECTION II

CIRCUITS

CHAPTER VIII

ADMITTANCE, CONDUCTANCE, SUSCEPTANCE

48. If in a continuous-current circuit, a number of resistances,

Ti t
rz> rs> >

are connected in series, their joint resistance, R,
is the sum of the individual resistances, R = ri + ?*2 + rs + . . .

If, however, a number of resistances are connected in multiple
or in parallel, their joint resistance, R, cannot be expressed in a

simple form, but is represented by the expression

R = ~z i ^

Hence, in the latter case it is preferable to introduce, instead of

the term resistance, its reciprocal, or inverse value, the term

conductance, g = -
If, then, a number of conductances,

9i> 92> 03> are connected in parallel, their joint conductance

is the sum of the individual conductances, or G =
gi + gr2 +

03 -h . . . When using the term conductance, the joint con-

ductance of a number of series-connected conductances becomes

similarly a complicated expression

..
01 02 03

Hence the term resistance is preferable in case of series con-

nection, and the use of the reciprocal term conductance in parallel

connections
; therefore,

The joint resistance of a number of series-connected resistances

is equal to the sum of the individual resistances; the joint conduct-

ance of a number of parallel-connected conductances is equal to

the sum of the individual conductances.

54
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49. In alternating-current circuits, instead of the term resist-

ance we have the term impedance, Z = r + jx, with its two

components, the resistance, r, and the reactance, x, in the formula

of Ohm's law, E = IZ. The resistance, r, gives the component

of e.m.f. in phase with the current, or the power component
of the e.m.f., Ir; the reactance, x, gives the component of the

e.m.f. in quadrature with the current, or the wattless component
of e.m.f., Ix; both combined give the total e.m.f.,

Iz = iVr2 + z2
.

Since e.m.fs. are combined by adding their complex expressions,

we have:

The joint impedance of a number of series-connected impedances
is the sum of the individual impedances, when expressed in com-

plex quantities.

In graphical representation impedances have not to be added,

but are combined in their proper phase by the law of parallelo-

gram in the same manner as the e.m.fs. corresponding to them.

The term impedance becomes inconvenient, however, when

dealing with parallel-connected circuits; or, in other words, when

several currents are produced .by the same e.m.f., such as in

cases where Ohm's law is expressed in the form,

i|
. Z

It is preferable, then, to introduce the reciprocal of impe-

dance, which may be called the admittance of the circuit, or

As the reciprocal of the complex quantity, Z = r + j%, the

admittance is a complex quantity also, or Y = g jb; it con-

sists of the component, g, which respresents the coefficient of

current in phase with the e.m.f., or the power or active com-

ponent, gE, of the current, in the equation of Ohm's law,

I =YE = (g-jb)E,

and the component, b, which represents the coefficient of current

in quadrature with the e.m.f., or wattless or reactive component,

bE, of the current.

g is called the conductance, and b the susceptance, of the cir-

cuit. Hence the conductance, g, is the power component, and
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the susceptance, b, the wattless component, of the admittance,
Y = g jb, while the numerical value of admittance is

the resistance, r, is the power component, and the reactance,

x, the wattless component, of the impedance, Z = r + jx, the

numerical value of impedance being

z = ->/r
2 + x2

.

50. As shown, the term admittance implies resolving the cur-

rent into two components, in phase and in quadrature with the

e.m.f., or the power or active component and the wattless or

reactive component; while the term impedance implies resolving

the e.m.f. into two components, in phase and in quadrature
with the current, or the power component and the wattless or

reactive component.
It must be understood, however, that the conductance is not

the reciprocal of the resistance, but depends upon the reactance

as well as upon the resistance. Only when the reactance x =
0,

or in continuous-current-circuits, is the conductance the recip-

rocal of resistance.

Again, only in circuits with zero resistance (r 0) is the

susceptance the reciprocal of reactance; otherwise, the suscep-

tance depends upon reactance and upon resistance.

The conductance is zero for two values of the resistance:

1. Ifr= oo
?
or z =

oo, since in this case there is no current,

and either component of the current = 0.

2. If r =
0, since in this case the current in the circuit is in

quadrature with the e.m.f., and thus has no power component.

Similarly, the susceptance, 6, is zero for two values of the

reactance:

1. If x = c
,
or r = oo.

2. If x = 0.

From the definition of admittance, Y = g jb, as the recip-

rocal of the impedance, Z = r + jx,

we have
1 *

Y =
7^,

or g jb =
^

.

.^

or, multiplying numerator and denominator on the right side by

(r-jx),
r - jx
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hence, since

(r + jx) (r
-

jx) = r2 + x 2 = z 2
,

r . x r . x
* x2

-
3
r2 + x2

=
~*
~

3 ~2

or

L
z2

X X

9 ~
r2 -f x2 z2

'

(/ ~~~ O I O
~~

*> J

r2 + x2 z2

and conversely

.

y
'

A
y
a-

By these equations, the conductance and susceptance can be

calculated from resistance and reactance, and conversely.

Multiplying the equations for g and r, we get

hence, z 2
y

2 =
(r

2 + x 2
) (g

2 + b 2
)
=

1;

1 1
] the absolute value

and 2 = -

+ b2
\

of impedance;
1 1 I the absolute value

z -\/r
2

_j_ X2
j

Of admittance.

51. If, in a circuit, the reactance, x, is constant, and the

resistance, r, is varied from r = to r <

,
the susceptance,

b, decreases from 6 = - at r = 0, to 6 = at r =
;
while the

M/

conductance, g
= at r = 0, increases, reaches a maximum for

T* = x, where g = ~
,

is equal to the susceptance or g
=

b, and

then decreases again, reaching g = at r =
.

In Fig. 49, for constant reactance x = 0.5 ohm, the variation

of the conductance, g, and of the susceptance, 6, are shown as

functions of the varying resistance, r. As shown, the absolute

value of admittance, susceptance, and conductance are plotted

in full lines, and in dotted line the absolute value of impedance,

z =
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Obviously, if the resistance, r, is constant, and the reactance,

x, is varied, the values of conductance and susceptance are

merely exchanged, the conductance decreasing steadily from

g = - to 0, and the susceptance passing from at x = to the

maxmum, = x- =
gf
= ^_ /' z x ,

and to 6 = at x =

The resistance, r, and the reactance, x, vary as functions of

the conductance, g, and the susceptance, b, in the same manner
as g and 6 vary as functions of r and x.

OHlJs
n n\-
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The joint impedance of a number of series-connected impedances
is equal to the sum of the individual impedances; the joint admit-

tance of a number of parallel-connected admittances is equal to the

sum of the individual admittances, if expressed in complex quantities.

In diagrammatic representation, combination by the parallelogram

law takes the place of addition of the complex quantities.

62. Experimentally, impedances and admittances are most

conveniently determined by establishing an alternating current

in the circuit, and measuring by voltmeter, ammeter and watt-

meter, the volts, e, the amperes, i, and the watts, p.

It is then,

Impedance: z = -

P
Resistance (effective): r = ^

Reactance: x =
f\

Admittance: y =
6

Conductance: g =
-$

Susceptance: b =
\/y

2
g
2

.

Regarding their calculation, see "Theoretical Elements of

Electrical Engineering."



CHAPTER IX

CIRCUITS CONTAINING RESISTANCE, INDUCTIVE
REACTANCE, AND CONDENSIVE REACTANCE

53. Having, in the foregoing, re-established Ohm's law and

KirchhofTs laws as being also the fundamental laws of alternating-

current circuits, when expressed in their complex form,

E = ZI, or, 7 = YE,

and

2E = in a closed circuit,

27 = at a distributing point t

where E, I, Z, Y, are the expressions of e.m.f., current, impe-

dance, and admittance in complex quantities these values

representing not only the intensity, but also the phase, of the

alternating wave we can now by application of these laws,

and in the same manner as with continuous-current circuits,

keeping in mind, however, that E, I, Z, Y, are complex quanti-

ties calculate alternating-current circuits and networks of

circuits containing resistance, inductive reactance, and conden-

sive reactance in any combination, without meeting with greater

difficulties than when dealing with continuous-current circuits.

It is obviously not possible to discuss with any completeness
all the infinite varieties of combinations of resistance, inductive

reactance, and condensive reactance which can be imagined,
and which may exist, in a system of network of circuits; there-

fore only some of the more common or more interesting combina-

tions will here be considered.

1. Resistance in Series with a Circuit

54. In a constant-potential system with impressed e.m.f.,

Eo = eQ + je'o, EQ = Ve<>
2 + e

' 2
,

let the receiving circuit of impedance,

Z = r + jx, z = Vr2 + x2
,

be connected in series with a resistance, r .

60
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The total impedance of the circuit is then

Z + rQ = r + r + jx\

hence the current is

ffo #o #o(r + r -
jap

''

(r + r )
2 + z2 ;

and the e.m.f. of the receiving circuit becomes

F 17 =

z2 + 2 rr + ro
2 '

or, in absolute values we have the following:

Impressed e.m.f.,

current,
,

_ EQ EQ

V(r + r )
2

-1- z2 Vz2 + 2 rr + r 2
'

e.m.f. at terminals of receiver circuit,

(r + r )
2 + a;

2

difference of phase in receiver circuit, tan 6 = -;

difference of phase in supply circuit, tan =
r

since in general,

x imaginary component
tan (phase) = - -7

real component

(a) If x is negligible with respect to r, as in a non-inductive

receiving circuit,

T - E F - W T
J-

j
) Hi -C/o i

>

r + ro r + r

and the current and e.m.f. at receiver terminals decrease steadily

with increasing r .

(6) If r is negligible compared with x, as in a wattless receiver

circuit,

J- Eo F F
X

J. / , Jli JG/n ,

Vro2 + z2 Vro2 + a:
2 '

or, for small values of r
,

/ =
> E =

EQ',
JO
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that is, the current and e.m.f. at receiver terminals remain

approximately constant for small values of r
,
and then de-

crease with increasing rapidity.

In the general equations, x appears in the expressions for

/ and E only as x2
,
so that / and E assume the same value when

x is negative as when x is positive; or, in other words, series

resistance acts upon a circuit with leading current, or in a

condenser circuit, in the same way as upon a circuit with lag-

ging current, or an inductive circuit.

For a given impedance, 2, of the receiver circuit, the current,

7, and e.m.f., E, are smaller the larger the value of r; that is,

the less the difference of phase in the receiver circuit.

100

60

IMPRESSED E..M.F. CONSTANT, E =IOO

IMPEDANCE OF RECEIVER CIRCUIT CONSTANT, Z f.O

LINE- RESISTANCE CONSTANT

DUdlTAf. REACTANCE

-hi T.2--.3--.4 --.S--.6 -

OONDEN3AN

FIG. 50. Variation of voltage at constant series resistance with phase
relation of receiver circuit.

As an instance, in Fig. 50 is shown the e.m.f., E, at the re-

ceiver circuit, for EQ
= const. = 100 volts, z = 1 ohm; hence

I =* E, and

(a) r = 0.2 ohm (Curve I)

(6) r = 0.8 ohm (Curve II)

for abscissae, fromwith values of reactance, x =

x = + 1.0 to x = - 1.0 ohm.

As shown, / and E are smallest for x =
0, r = 1.0, or for

the non-inductive receiver circuit, and largest for x =
1.0,

r = 0, or for the wattless circuit, in which latter a series resist-

ance causes but a very small drop of potential.

Hence the control of a circuit by series resistance depends

upon the difference of phase in the circuit.
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For r = 0.8 and x =
0, x = + 0.8, x =

0.8, the vector

diagrams are shown in Figs. 51 to 53.

In these Figs. OEQ is the supply voltage, OES the voltage con-

sumed by the line resistance, and OE thej^eceiver voltage, with

its two components, OEi in phase and OE2 in quadrature with

the current.

Es E

FIG. 52. FIG. 53.FIG. 51.

2. Reactance in Series with a Circuit

52. In a constant potential system of impressed e.m.f.,

EQ = e + je'o, E = Ve'o2 + e'
2

let a reactance, x
,
be connected in series in a receiver circuit of

impedance,
Z = r + jx, z = Vr2 + z2

.

Then, the total impedance of the circuit is

Z + jxQ
= r + j (x + 0),

and the current is

"
Z + JXQ

~
r + j (x + zo)

while the difference of potential at the receiver terminals is

E = IZ = E

Or, in absolute quantities,

current,
E

+ jx

r+j(x

I = E.

(x

e.m.f. at receiver terminals,

2xxo

E z
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difference of phase in receiver circuit,

x
tan 6 = -;

difference of phase in supply circuit,

tan e = -

(a) If x is small compared with r, that is, if the receiver circuit

is non-inductive, / and E change very little for small values of

XQ', but if x is large, that is, if the receiver circuit is of large re-

actance, 7 and E change considerably with a change of x .

(b) If x is negative, that is, if the receiver circuit contains

condensers, synchronous motors, or other apparatus which

produce leading currents, below a certain value of XQ the de-

nominator in the expression of E becomes <z, or E > EQ ;
that

is, the reactance, x
,
raises the voltage.

(c) E = EQ) or the insertion of a series reactance, XQ, does

not affect the potential difference at the receiver terminals, if

2x XQ -f x 2 =
z;

or, XQ
= 2x.

That is, if the reactance which is connected in series in the

circuit is of opposite sign, but twice as large as the reactance

of the receiver circuit, the voltage is not affected, but E = EQ ,

ET

/ = ~ If xQ < 2x, it raises, ifXQ > 2x, it lowers, the voltage.

We see, then, that a reactance inserted in series in an alter-

nating-current circuit will always lower the voltage at the

receiver terminals, when of the same sign as the reactance of the

receiver circuit; when of opposite sign, it will lower the voltage
if larger, raise the voltage if less, than twice the numerical value

of the reactance of the receiver circuit.

(d) If x =
0, that is, if the receiver circuit is non-inductive,

the e.m.f. at receiver terminals is

"E ='

( /
= =

(1 -|- x)
^
expanded by the binomial theorem

n i

n (n ~ ^ 21 \
~^T~ X '')'
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Therefore, if x is small compared with r,

65

- E

That is, the percentage drop of potential by the insertion

of reactance in series in a non-inductive circuit is, for small

values of reactance, independent of the sign, but proportional

to the square of the reactance, or the same whether it be induc-

tive reactance or condensive reactance.
,-

56. As an example, in Fig. 54 the changes of current, 7, and
of e.m.f. at receiver terminals, E

}
at constant impressed e.m.f.,

VOLTS E OR AMPERES I

100

90

80
j
c 70
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As seen, curve I is symmetrical, and with increasing z the

voltage E remains first almost constant, and then drops off

with increasing rapidity.

In the inductive circuit series inductive reactance, or in a

condenser circuit series condensive reactance, causes the voltage

to drop off very much faster than in a non-inductive circuit.

Series inductive reactance in a condenser circuit, and series

condensive reactance in an inductive circuit, cause a rise of

potential. This rise is a maximum for x =
0.8, or XQ =

x (the condition of resonance), and the e.m.f. reaches the

value E = 167 volts, or E E -' This rise of potential by

series reactance continues up to XQ = 1.6, or, XQ = 2x,

where E = 100 volts again; and for XQ > 1.6 the voltage drops

again.

At x =
0.8, x = + 0.8, the total impedance of the circuit

is r j (x + XQ)
= r = 0.6, x + XQ

=
0, and tan = 0; that

FIG. 55. FIG. 56. FIG. 57.

is, the current and e.m.f. in the supply circuit are in phase with

each other, or the circuit is in electrical resonance.

Since a synchronous motor in the condition of efficient work-

ing acts as a condensive reactance, we get the remarkable result

that, in synchronous motor circuits, choking coils, or reactive

coils, can be used for raising the voltage.

In Figs. 55 to 57, the vector diagrams are shown for the

conditions

= 100, XQ
=

0.6, x =

x = + 0.8

x = - 0.8

(Fig. 48) E = 85.7

(Fig. 49) E = 65.7

(Fig. 50) E = 158.1.
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57. In Fig. 58 the dependence of the potential, E, upon the

difference of phase, 6, in the receiver circuit is shown for the

constant impressed e.m.f., EQ
= 100; for the constant receiver

impedance, z = 1.0 (but of various phase differences 0), and for

various series reactances, as follows:

x = 0.2 (Curve I)

x = 0.6 (Curve II)

x = 0.8 (Curve III)

XQ
= 1.0 (Curve IV)

BO = 1.6 (Curve V)
x = 3.2 (Curve VI).

Since z = 1.0, the current, /, in all these diagrams has the

same value as E.

180

170

160

150

140

130

IMPRESSED E.M.F, CONSTANT, E =100
IMPEDANCE OF RECEIVER CIRCUIT CONSTANT,

I, *o-.2 IV, x o=1.0
Z=1.0

[I, ff
= .6 V. =1.6

VI, *o=3.2 y

///

80 70 60 50 40 30 20 10 10 20 30 40 50 60 70 80 90 DEGREES

LAG^-PHASE DIFFERENCE IN CONSUMER CJRCUIT--LEAD

FIG. 58.

In Figs. 59 and 60, the same curves are plotted as in Fig. 58,

but in Fig. 59 with the reactance, x, of the receiver circuit as

abscissas; and in Fig. 60 with the resistance, r, of the receiver

circuit as abscissas.

As shown, the receiver voltage, E }
is always lowest when XQ

and x are of the same sign, and highest when they are of opposite

sign.
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IMPRESSED E.M.F. CONSTANT, E = 100

IMPEDANCE O.F RECEIVER CIRCUIT CONSTANT. Z1.0

10

f1 +.9 +.8 +.7 +.6 +.5 +.4 +.3 4.2 +.1 -.1 -.2 -.3 -.4 -.5 -.6 -.7 -.8 -.9-10

REACTANCE OF CONSUMER CIRCUIT

FIG. 59.

IMPRESSED E.M.F, CONSTANT, E = 100

IMPEDANCE OF RECEIVER CIRCUIT
CONSTANT. Z -1.0

.1 .2 .3 .4 .5 .6 .7

LAGGING CURRENT -
_ 1.0 .9

,ESISTANCE OF
CONSUMER CIRCUIT

FIG. 60.

8 .7 .6 .5 .4 .3 .2 .1 .0

LEADING CURRENT
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The rise of voltage due to the balance of XQ and x is a maxi-

mum for XQ
= + 1.0, x =

1.0, and r =
0, where E = oo

;

that is, absolute resonance takes place. Obviously, this condi-

tion cannot be completely reached in practice.

It is interesting to note, from Fig. 60, that the largest part

of the drop of potential due to inductive reactance, and rise to

condensive reactance or conversely takes place between

r = 1.0 and r = 0.9; or, in other words, a circuit having a

power-factor cos 6 = 0.9 gives a drop several times larger than

a non-inductive circuit, and hence must be considered as an

inductive circuit.

3. Impedance in Series with a Circuit

68. By the use of reactance for controlling electric circuits,

a certain amount of resistance is also introduced, due to the

ohmic resistance of the conductor and the hysteretic loss, which,

as will be seen hereafter, can be represented as an effective

resistance.

Hence the impedance of a reactive coil (choking coil) may be

written thus:

Z = r + jxQ , ZQ =

where r is in general small compared with

From this, if the impressed e.m.f. is

Eo
= eQ + je'o, EQ = VV + *o'

and the impedance of the consumer circuit is

Z = r + jx, z = \/V2
-f x2

,

we get the current

, _ EQ __EQ_~
Z + Z Q

~
(r + r ) + j(z + z )

and the e.m.f. at receiver terminals,

Z r + x

Or, in absolute quantities,

the current is,

E.
I =

V(r + r )
2
-f (z + Z )

2 V z2 + z 2 + 2 (rr + zz )

the e.m.f. at receiver terminals is

E =
(x + z )

2 z2 + zo
2 + 2 (rr
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the difference of phase in receiver circuit is

or

tan ;

and the difference of phase in the supply circuit is

tan =
;

-

f T" 7*0

69. In this case, the maximum drop of potential will not

take place for either x =
0, as for resistance in series, or for

r = 0, as for reactance in series, but at an intermediate point.
The drop of voltage is a maximum; that is, E is a minimum if

the denominator of E is a maximum; or, since z, z
,
r

,
x are

constant, if rr + XXQ is a maximum, that is, since x = \/zz r2
,

if rr -\- xQ\/z2 r2 is a maximum. A function, / = rr + XQ

Vz2 r2
,
is a maximum when its differential coefficient equals

zero. For, plotting / as curve with values of r as abscissas, at

the point where / is a maximum or a minimum, this curve is

for a short distance horizontal, hence the tangens-function of

its tangent equals zero. The tangens-function of the tangent
of a curve, however, is the ratio of the change of ordinates to

the change of abscissas, or is the differential coefficient of the

function represented by the curve.

Thus we have

/ = rr + xQ\/z2 r2

is a maximum or minimum, if

Differentiating, we get
1 /y-

-
2r) =

0;

=
0,

That is, the drop of potential is a maximum, if the reactance

factor, -, of the receiver circuit equals the reactance factor, ,T TQ

of the series impedance.
60. As an example, Fig. 61 shows the e.m.f., E, at the receiver

terminals, at a constant impressed e.m.f., EQ = 100, a constant
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impedance of the receiver circuit, z =
1.0, and constant series

impedances,
Z = 0.3 -h j 0.4 (Curve I)

Z = 1.2 +j 1.6 (Curve II)

as functions of the reactance, x, of the receiver circuit.

150

140

130

120

110

100

90

70

50

1. .9 .8 .7 .6 ,5 A .3 ..2 .1 -.1 -,2 -,3 -,4 -.5 -.6 -J -.8 -.9-1,

FlG. 62. FIG. 63.
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Figs. 62 to 64, give the vector diagram for EQ
= 100, x = 0.95,

x =
o, x = -

0.95, and ZQ
= 0.3 + 0.4 j.

4. Compensation for Lagging Currents by Shunted

Condensive Reactance

61. We have seen in the preceding paragraphs, that in a

constant potential alternating-current system, the voltage at

the terminals of a receiver circuit can be varied by the use of

a variable reactance in series with the circuit, without loss of

energy except the unavoidable loss due to the resistance and

hysteresis of the reactance; and that, if the series reactance is

very large compared with the resistance of the receiver circuit,

the current in the receiver circuit becomes more or less inde-

pendent of the resistance that is, of the power consumed in

the receiver circuit, which in this case approaches the conditions

of a -constant alternating-current circuit, whose current is

I = E
-, or, approximately, I =

This potential control, however, causes the current taken

from the mains to lag greatly behind the e.m.f., and thereby

requires a much larger current than corresponds to the power
consumed in the receiver circuit.

Since a condenser draws from the mains a current in leading

phase, a condenser shunted across such a circuit carrying cur-

rent in lagging phase compensates for the lag, the leading and

the lagging current combining to form a resultant current more
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or less in phase with the e.m.f., and therefore proportional to

the power expended.
In a circuit shown diagrammatically in Fig. 65, let the non-

inductive receiver circuit of resistance, r, be connected in series

with the inductive reactance, XQ) and the whole shunted by a

condenser C of condensive reactance, xe , entailing but a negligible

loss of power.

FIG. 65.

Then, if EQ = impressed e.m.f.,

the current in receiver circuit is

1=
^

r + jxo

the current in condenser circuit is

I = E

JXc

and the total current is

7 = / + 7i = E Q

I 1

i" -r JXQ jxc

2 ~J r2 + XQ 4)1
or, in absolute terms,

/o -*Jt
while the e.m.f. at receiver terminals is

r
E = IT = E< E = E r

62. The main current, 7
,

is in phase with the impressed

e.m.f., EQ, or the lagging current is completely balanced, or

supplied by, the condensive reactance, if the imaginary term in

the expression of J disappears; that is, if

- = 0.
xc
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This gives, expanded,

_ r2 + xo
2

Hence the capacity required to compensate for the lagging

current produced by the insertion of inductive reactance in

series with a non-inductive circuit depends upon the resistance

and the inductive reactance of the circuit. XQ being constant,

with increasing resistance, r, the condensive reactance has to be

increased, or the capacity decreased, to keep the balance.

Substituting
r2 + *o

2

Xc
= -

>

XQ

we get, as the equations of the inductive circuit balanced by
condensive reactance,

EQ E (r
-

jxQ)

EQr
=

and for the power expended in the receiver circuit,

r2 + zo
2

that is, the main current is proportional to the expenditure of

power.
For r = 0, we have xc

= x
,
as the condition of balance.

Complete balance of the lagging component of current by
shunted capacity thus requires that the condensive reactance xc

be varied with the resistance, r; that is, with the varying load

on the receiver circuit.

In Fig. 66 are shown, for a constant impressed e.m.f., E =

1000 volts, and a constant series reactance, XQ
= 100 ohms, values

for the balanced circuit of

current in receiver circuit (Curve I),

current in condenser circuit (Curve II),

current in main circuit (Curve III),

e.m.f. at receiver terminals (Curve IV),
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with the values the resistance, r, of the receiver circuit as

abscissas.

63. If, however, the condensive reactance is left unchanged,

xc
= x at the no-load value, the circuit is balanced for r = 0,

but will be overbalanced for r>0, and the main current will be-

come leading.

IMPRESSED E.Jyi.F. CONSTANT, E =IOOO VOCTS.
SERIES REACTANCE CONSTANT, Xo=IOO OHMS.
VARIABLE RESISTANCE IN RECEIVER CIRCUIT.
BALANCED BY VARYIN.G THE SHUNTED CONDEN3ANCE.

I. CURRENT IN RECEIVER CIRCUIT.
(I. CURRENT IN CONDENSER CIRCUIT.
III. CURRENT IN MAIN CIRCUIT.
IV. E.M.F. AT RECEIVER CIRCUIT.

10 JiO 30 40 60 60 70 80 90 100 110 120 130 140 150 160 170 ISO 190 200

FIG. 66. Compensation of lagging currents in receiving circuit by variable

shunted condensance.

We get in this case,

E
xc
= x Q ;

r -t- JXQ

The difference of phase in the main circuit is

tan = '

XQ
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which is = 0, when r = or at no-load, and increases with

increasing resistance, as the lead of the current. At the same

time, the current in the receiver circuit, /, is approximately con-

stant for small values of r, and then gradually decreases.

In Fig. 67 are shown the values of 7, /i, 7
, E, in Curves

I, II, III, IV, similarly as in Fig. 60, for E Q
= 1000 volts,

xc
= xQ

= 100 ohms, and r as abscissas.

AMPERES
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creasing resistance, r; that is, with increasing lead of the main

current. Since, as explained before, in a circuit with leading

current, a series inductive reactance raises the potential, to

maintain the current in the receiver circuit constant under all

loads, an inductive reactance, x 2 ,
inserted in the main circuit,

as shown in the diagram, Fig. 68, can be used for raising the

voltage, EQ, with increasing load, and by properly choosing the

inductive and the condensive reactances, practically constant

current at varying load can be produced from constant voltage

supply, and inversely.

FIG. 68

The generation of alternating-current electric power almost

always takes place at constant potential. For some purposes,

however, as for operating series arc circuits, and to a limited

extent also for electric furnaces, a constant, or approximately

constant, alternating current is required.

Such constant alternating currents can be produced from

constant potential circuits by means of inductive reactances,

or combinations of inductive and condensive reactances; and

the investigation of different methods of producing constant

alternating current from constant alternating potential, or

inversely, constitutes a good illustration of the application of

the terms "
impedance,"

"
reactance," etc., and offers a large

number of problems or examples for the application of the

method of complex quantities. A number of such are given in

"Theory and Calculation of Electric Circuits."



CHAPTER X

RESISTANCE AND REACTANCE OF TRANSMISSION
LINES

65. In alternating-current circuits, voltage is consumed in

the feeders of distributing networks, and in the lines of long-

distance transmissions, not only by the resistance, but also

by the reactance, of the line. The voltage consumed by the

resistance is in phase, while the voltage consumed by the react-

ance is in quadrature, with the current. Hence their in-

fluence upon the voltage at the receiver circuit depends upon
the difference of phase between the current and the voltage in

that circuit. As discussed before, the drop of potential due to

the resistance is a maximum when the receiver current is in

phase, a minimum when it is in quadrature, with the voltage.

The change of voltage due to line reactance is small if the

current is in phase with the voltage, while a drop of potential is

produced with a lagging, and a rise of potential with a leading,

current in the receiver circuit.

Thus the change of voltage due to a line of given resistance

and reactance depends upon the phase difference in the receiver

circuit, and can be varied and controlled by varying this phase

difference; that is, by varying the admittance, Y = g jb, of

the receiver circuit.

The conductance, g, of the receiver circuit depends upon
the consumption of power that is, upon the load on the

circuit and thus cannot be varied for the purpose of regu-

lation. Its susceptance, 6, however, can be changed by shunt-

ing the circuit with a reactance, and will be increased by a

shunted inductive reactance, and decreased by a shunted con-

densive reactance. Hence, for the purpose of investigation, the

receiver circuit can be assumed to consist of two branches, a

conductance, g, the non-inductive part of the circuit

shunted by a susceptance, 6, which can be varied without

expenditure of energy. The two components of current can

thus be considered separately, the energy component as deter-

78
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mined by the load on the circuit, and the wattless component,
which can be varied for the purpose of regulation.

Obviously, in the same way, the voltage at the receiver circuit

may be considered as consisting of two components, the power

component, in phase with the current, and the wattless com-

ponent, in quadrature with the current. This will correspond
to the case of a reactance connected in series to the non-inductive

part of the circuit. Since the effect of either resolution into

components is the same so far as the line is concerned, we need

not make any assumption as to whether the wattless part of the

receiver circuit is in shunt, or in series, to the power part.

Let

ZQ = r -f- Jo = impedance of the line;

Y = g jb = admittance of receiver circuit;

y = vV + & 2
;

EQ = e -\- je'o
= impressed voltage at generator end of line

;

+ e
' 2

;

E = e + je
f = voltage at receiver end of line;

E = Ve2 + e'
2

;
,

/o =
*o -f- ji\ = current in the line

;

/o = Vio 2 + *o'
2

.

The simplest condition is the non-inductive circuit.

1. Non-inductive Receiver Circuit Supplied over an Inductive

Line

66. In this case, the admittance of the receiver circuit is

F =
g, since 6 = 0.

We have then

current, IQ = Eg;

impressed voltage: E = E + Z I = E(l -f Z g).

Hence voltage at receiver circuit,

1 + Z<*g

current,

~
ZQg
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Hence, in absolute values voltage at receiver circuit,

is-

current,

"

The ratio of e.m.fs. at receiver circuit and at generator, or

supply circuit, is

E 1

and the power delivered in the non-inductive receiver circuit, or

output,

7 F -=
(1 + grtf + fxf

As a function of g, and with a given J0
,
r

,
and XQ) this power

is a maximum, if

dP =
0;

that is,

- 1 + grVo
2 + gV =

0;

hence,

conductance of receiver circuit for maximum output,

1 1

Resistance of receiver circuit, rm =
ZQ;

and, substituting this in P,

Maximum output, Pm -^ f
-. r = r-7

-
2 (r + to) 2 {TO + Vro2 + ^o

2

and ratio of e.m.f. at receiver and at generator end of line,

efficiency,
rm r r

That is:

The output which can be transmitted over an inductive line of

resistance, r
,
and reactance, x that is, of impedance, z into a
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non-inductive receiver circuit, is a maximum if the resistance of the

receiver circuit equals the impedance of the line, r = Z Q ,

and is

____
2 (r + zo)

The output is transmitted at the efficiency of

and with a ratio of e.m.fs. of

(+3
NON-INDUCTIVE RECE

SUPPLIED OVER INQUCTIV

AND OVER NON-INDUCTIVE
n =i

CURVE 1. E. M. F. AT RECEIVER
M IV. M " )'

" II- OUTPUT IN >'
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Eo = 1000 volts, Z = 2.5 -pGj; that is, r = 2.5 ohms, X = 6

ohms, 2 = 6.5 ohms, with the current 7 as abscissas, the values.

e.m.f . at receiver circuit, E, (Curve I) ;

output of transmission, P, (Curve II) ;

efficiency of transmission, (Curve III).

The same quantities for a non-inductive line of resistance,

r = 2.5 ohms, XQ = 0, are shown in Curves IV, V, and VI.

2. Maximum Power Supplied over an Inductive Line

68. If the receiver circuit contains the susceptance, b, in

addition to the conductance, g, its admittance can be written

thus:

Y = g
-

jb, y = vV + b2
.

Then, current, /o =EY\
Impressed voltage, E = E + I Z = E(l + 7Z ).

Hence, voltage at receiver terminals,_'

1 + YZ (1 + rog + x<*b) + j(xg - r b)
'

current,

EQY =_E,(g-jV)_ .
'

1 + KZo (1 + ro0 + xQb) +j(x g
-

rob)'

or, in absolute values, voltage at receiver circuit,

current,

JO ^ A / ~7^ , , T\~S I 7 T\ z '

ratio of e.m.fs. at receiver circuit and at generator circuit,

W + xJ>Y + (x g
-

and the output in the receiver circuit is

P = E*g = E QWg.
69. (a) Dependence of the output upon the susceptance of the

receiver circuit.

At a given conductance, g, of the receiver circuit, its output,

P = E 2a2
g, is a maximum if a 2

is a maximum; that is, when

s a mnmum.
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The condition necessary is

i=-
or, expanding,

zo(l + r g + x b)
- r (x Qg

- r 6)
= 0.

Hence

Susceptance of receiver circuit,

Xo
2 X

- = ~~ = " &

or 6 + 60 =
0,

that is, if the sum of the susceptances of line and of receiver

circuit equals zero.

Substituting this value, we get

ratio of e.m.fs. at maximum output,

E_
1

ai E *<*+ *)'
maximum output,

current,

,
"

-.*$
and, since,

T +

?V
it is,

r 2 2

= Z 2
to + 0o)

2
,

Thus, it is, current,

~fco
2
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phase difference in receiver circuit,

b 6
tan B = - =

;

g g

phase difference in generator circuit,

tan 0o = ~ ~
s~~i 5"

r + r </o2r + <72/o

70. (6) Dependence oj the output upon the conductance of the

receiver cirwit.

At a given susceptance, 6, of the receiver circuit, its output,

P = E 2 a 2
g, is a maximum if

or

(I + ro0 + ^o?>)
2 + (xQg

- r b)
2
\ _
/

=

that is, expanding,

(1 + r g + xob)
2 + (xofir

- r fc)
2 - 2 g(r + r

2
g + x W = 0;

or, expanding,

(b + 6 )
2 = g

2 -
sfo

2
; flf

= Vgo
* + (b + 6 )

2
.

Substituting this value in the equation for a, 68, we get

ratio of e.m.fs.,

1

o Y2J00
2 + (6 + 60)

s + SroV^o
2 + (b + 6 )

2
}

z V2 g(g + ) V2 0(0 + g )

'

power,
^o2

2/o
2 E 2

y
2

\

As a function of the susceptance, b, this power becomes a

maximum for -3=- = 0, that is, according to 69 if

6 = - 6 .

Substituting this value, we get

b = 6
, g =

go, y =
2/o, hence: Y = g jb =

g + j&oj

x = x
,

r = r
,
z = 2

>
Z = r + jx = r jx ;
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substituting this value, we get

ratio of e.m.fs.. am = pr^-
= ^-;2 go 2rV

power

that is, the same as with a continuous-current circuit; or, in

other words, the inductive reactance of the line and of the

receiver circuit can be perfectly balanced in its effect upon the

output.

71. As a summary, we thus have:

The output delivered over an inductive line of impedance,

ZQ = r Q + jx ,
into a non-inductive receiver circuit, is a maxi-

mum for the resistance, r = z
,
or conductance, g =

2/0, of the

receiver circuit, and this maximum is

2 (r + z )

at the ratio of voltages,

With a receiver circuit of constant susceptance, 6, the out-

put, as a function of the. conductance, g, is a maximum for the

conductance,

and is

P _ #o2
2/o

2

=
2(</ + )'

at the ratio of voltages,

With a receiver circuit of constant conductance, g, the output, as

a function of the susceptance, 6, is a maximum for the susceptance
6 = 6

,
and is

* 2 / I \2
ZQ (g T 0o)

at the ratio of voltages,

=
1

~
z (g + go)
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The maximum output which can be delivered over an induc-

tive line, as a function of the admittance or impedance of the

receiver circuit, takes place when Z = r jx ,
or Y =

go -f j6 ;

that is, when the resistance or conductance of receiver circuit

and line are equal, the reactance or susceptance of the receiver
7? 2

circuit and line are equal but of opposite sign, and is P = T >

4 ro

or independent of the reactances, but equal to the output of a

.01 .02 .03 .04 .05 .06 ,07 .08 .09 .10 .11 .12 .13

FIG. 70. Variation of the potential in line at different loads.

continuous-current circuit of equal line resistance. The ratio

of voltages is, in this case, a = ~
,

while in a continuous-
4 TQ

current circuit it is equal to 0.5. The efficiency is equal to 50

per cent.

72. As an example, in Fig. 70 are shown for the constants

EQ
= 1000 volts, and Z = 2.5 + 6j; that is, for

r = 2.5 ohms, XQ
= 6 ohms, z = 6.5 ohms,
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and with the variable conductances as abscissas, the values

of the

output, . in Curve I, Curve III, and Curve V;
ratio of voltages, in Curve II, Curve IV, and Curve VI;
Curves I and II refer to a non-inductive receiver

circuit
;

Curves III and IV refer to a receiver circuit of

constant susceptance b = 0.142

OUTPUT P AND RATIO OF POTENTIAL d AT RECEIVINO-AN D

.SENDING END OF LINE OF IMPEDANCR Z =3.5+
' _

AT CONSTANT IMPRESSED E.M.F.

I OUTPUT
II RATIO OF POTENTIALS

\\

\

SUSCERTANCE OF RECEIVER CIRCl IT

-.3 -.2 -.1 +.1 -f.2 +.3 +.4
FIG. 71. Variation of the potential in line at various loads.

Curves V and VI refer to a receiver circuit of

constant susceptance b = 0.142

Curves VII and VIII refer to a non-inductive re-

ceiver circuit and non-inductive line.

In Fig. 71 the output is shown as Curve I, and the ratio

of voltages as Curve II, for the same line constants, for a

constant conductance, g = 0.0592 ohm, and for variable sus-

ceptances, 6, of the receiver circuit.
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3. Maximum Efficiency

73. The output for a given conductance, g, of a receiver

circuit is a maximum if 6 = 6 . This, however, is- generally

not the condition of maximum efficiency.

The loss of power in the line is constant if the current is

constant; the output of the generator for a given current and

given generator voltage is a maximum if the current is in phase
with the voltage at the generator terminals. Hence the con-

dition of maximum output at given loss, or of maximum effi-

ciency is

tan 6 = 0.

The current is

77? 77T

, _ &0 _ -PO .

.

~
Z + Z

~
(r + r ) + j(x + x )

'

The current, /o, is in phase with the e.m.f., EQ, if its quad-

rature component that is, the imaginary term disappears,

or

x + x = 0.

This, therefore, is the condition of maximum efficiency,

x = xQ .

Hence, the condition of maximum efficiency is that the

reactance of the receiver circuit shall be equal, but of opposite

sign, to the reactance of the line.

Substituting x = XQ ,
we have:

ratio of e.m.fs.,

E_
z Vr2 + a 2

,

power,

and depending upon the resistance only, and not upon the

reactance.

This power is a maximum if g
=

go, as shown before; hence,

substituting g = g Q ,
r r

,

p1 2

maximum power at maximum efficiency, Pm = T^~>
ftrso

at a ratio of potentials, am =
'

or the same result as in 70.
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In Fig. 72 are shown, for the constants,

E = 100 volts,

Z = 2.5 + 6j; r = 2.5 ohms, XQ = 6 ohms, z = 6.5 ohms,

and with the variable conductances, g, of the receiver circuit

as abscissas, the

Output at maximum efficiency, (Curve I) ;

Volts at receiving end of line, (Curve II);

Efficiency =
, (Curve III).

FIG.

.01 .02 .03 .04 .05 .00 .O/ .08

72. Load characteristics of transmission lines.

4. Control of Receiver Voltage by Shunted Susceptance

74. By varying the susceptance of the receiver circuit, the

voltage at the receiver terminals is varied greatly. Therefore,

since the susceptance of the receiver circuit can be varied at

will, it is possible, at a constant generator voltage, to adjust

the receiver susceptance so as to keep the voltage constant at

the receiver end of the line, or to vary it in any desired manner,
and independently of the generator voltage, within certain limits.
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The ratio of voltages is

E 1
a =

-JJT /^o V (1 -f r g + x b )
2 + (xQg r 6)

2

If at constant generator voltage E the receiver voltage E
shall be constant,

a = constant;

hence,

(1 -f r Qg + z

or, expanding,

6 = -
bo

-

which is the value of the susceptance, 6, as a function of the

receiver conductance that is, of the load which is required
to yield constant voltage, aE Q ,

at the receiver circuit.

For increasing g, that is, for increasing load, a point is reached

where, in the expression

b = b 4- \ (} (a + a )
2

,

the term under the root becomes negative, and b thus imaginary,
and it thus becomes impossible to maintain a constant voltage,

aEo. Therefore the maximum output which can be transmitted

at voltage, aE
,
is given by the expression

-
(9 + ff)

2 =
0;

hence the susceptance of receiver circuit is b = b
,
and the

conductance of receiver circuit is g = g Q + >

a

-
,
the output.

75. If a =
1, that is, if the voltage at the receiver circuit

equals the generator voltage,

g =
2/o
-

go', P = Eo^yo - g ).

If a =
1, when g =

0, b =

when g > 0, b < 0;

if a > 1, when g
=

0, or g > 0, b < 0,

that is, condensive reactance;

if a < 1, when g
=

0, b > 0,
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whensr= -sro +A-^ 2
,

6 =
0;

when g > -
g Q + - 6 2

,
6 < 0,

or, in other words, if a < 1, the phase difference in the main

line must change from lag to lead with increasing load.

76. The value of a giving the maximum possible output in

a receiver circuit is determined by -7 =
0;

expanding 2 a (^
-

<7o)

- T =
0;

hence yo = 2 ago,

2/o 1 Zo
=

the maximum output is determined by
7/0

g = -
0o -I-

= g Q
'

}

2

and is, P

From a =
20o 2r

the line reactance, XQ ,
can be found, which delivers a maximum

output into the receiver circuit at the ratio of. voltages, a, as

ZQ = 2 r Qa,

XQ = r \/4 a2
1 ;

for a =
1,

Zo = 2r
;

If, therefore, the line impedance equals 2 a times the line

E 2

resistance, the maximum output, P =
j ,

is transmitted into
tb 7*o

the receiver circuit at the ratio of voltages, a.

If ^ = 2r
,
or X Q

= r \/3> the maximum output, P =
fi

1 2

can be supplied to the receiver circuit, without change of voltage
at the receiver terminals.

Obviously, in an analogous manner, the law of variation

of the susceptance of the receiver circuit can be found which

is required to increase the receiver voltage proportionally to
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the load; or, still more generally, to cause any desired varia-

tion of the voltage at the receiver circuit independently of any
variation of the generator voltage, as, for instance, to keep the

voltage of a receiver circuit constant, even if the generator volt-

age fluctuates widely.

77. In Figs. 73, 74, and 75 are shown, with the output,
P = E *ga*, as abscissas, and a constant impressed voltage,

RATIO OF RECEIVER VOLTAGE TO SENDER VOLTAGE: O = 1.0

LINE.IMPEDANCE* Zo=2- +6j
I ENERGY CURRENT CONSTANT GENERATOR POTENTIAL E =
II REACTIVE CURRENT
III TOTAL CURRENT
IV CURRENT IN NON-INDUCTIVE RECEIVER CIRCUIT WITHOUT COMPENSATION
V POTENTIAL n ,_, n n ,_,

100

20 80 40 50 60 70 80 90

OUTPUT IN RECEIVER CIRCUIT, KILOWATTS

FIG. 73. Variation of voltage of transmission lines.

EQ = 1000 volts, and a constant line impedance, ZQ
= 2.5 + 6 j,

or r = 2.5 ohms, x = 6 ohms, z = 6.5 ohms, the following

values :

power component of current, gE, (Curve I) ;

reactive, or wattless component of current, bE, (Curve II) ;

total current, yE, (Curve III),

and power factor at generator for the following conditions:

a = 1.0 (Fig. 73); a = 0.7 (Fig. 74); a = 1.3 (Fig. 75).

For the non-inductive receiver circuit (in dotted lines), the

curve of e.m.f., E, and of the current, I = gE, are added in the

three diagrams for comparison, as Curves IV and V.

As shown, the output can be increased greatly, and the

voltage at the same time maintained constant, by the judicious
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RATIO OF RECEIVER VOLTAGE TO BENDER VOLTAGE: a = .7

LINE IMPEDANCE: Z 5=2. B+ -6j
I ENERGY CURRENT CONSTANT GENERATOR POTENTIAL E,

II REACTIVE CURRENT
III TOTAL CURRENT
IV POTENTIAL IN NON-INDUCTIVE CIRCUIT WITHOUT COMPENSATION

80 40 60 60 70 8(

OUTPUT IN RECEIVER CIRCUIT, KILOWATTS

240

220

200

180

100

140

120

100

80

60

40

20

20

40

FIG. 74. Variation of voltage of transmission lines.

RATIO OF RECEIVER VOLTAGE TO SENDER VOLTAGE: a = 1,8

LINE IMPEDANCE: Z =2.6 -f- OJ
I ENERGY CURRENT CONSTANT GENERATOR POTENTIAL
II REACTIVE CURRENT
III TOTAL CURRENT
IV POTENTIAL IN NON-INDUCTIVE RECEIVER CIRCUIT WITHOUT COMPENSATION

Eo=r100(

OUTPUT IN RECEIVER CIRCUIT, KILOWATTS

FIG. 75. Variation of voltage of transmission lines.

240

220

180

100
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use of shunted reactance, so that a much larger output can be

transmitted over the line with no drop, or even with a rise, of

voltage. Shunted susceptance, therefore, is extensively used

for voltage control of transmission lines, by means of synchronous

condensers, or by synchronous converters with compound field

winding.

5. Maximum Rise of Voltage at Receiver Circuit

78. Since, under certain circumstances, the yoltage at the

receiver circuit may be higher than at the generator, it is of

interest to determine what is the maximum value of voltage, E,

that can be produced at the receiver circuit with a given generator

voltage, EQ .

The condition is that

1
maximum or ^

= minimum:
a 2

that is,

dg db

substituting,

and expanding, we get,

___
f\

m

dg 2 2

a value which is impossible, since neither r nor g can be

negative. The next possible value is g = a wattless circuit.

Substituting this value, we get,

and by substituting, in

4 =
0, b = -

^\ = - 6
,

do 2o

b + 6 =
0;

that is, the sum of the susceptances =
0, or the inductive sus-

ceptance of the line is balanced by the capacity susceptance of

the load.
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. Substituting

we have

b = - 6
,

1 zo
a. =

r

The current in this case is

I =

VOLT
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assuming wattless receiver circuit, and is in phase with the

voltage, EQ.

79. As summary to this chapter, in Fig. 76 are plotted, for a

constant generator e.m.f., EQ = 1000 volts, and a line impedance,
Z = 2.5 + 6 j, or r = 2.5 ohms, x = 6 ohms, z = 6.5 ohms,
and with the receiver output as abscissas and the receiver

voltages as ordinates, curves representing

the condition of maximum output, (Curve I) ;

the condition of maximum efficiency, (Curve II);

the condition b = 0, or a non-inductive receiver

circuit, (Curve III);

the condition 6 =
0, 6 =

0, or a non-inductive line and

non-inductive receiver circuit.

In conclusion, it may be remarked here that of the sources

of susceptance, or reactance,

a choking coil or reactive coil corresponds to an inductive

reactance;

a condenser corresponds to a condensive reactance;

a polarization cell corresponds to a condensive reactance;

a synchronous machine (motor, generator or converter) cor-

responds to an inductive or a condensive reactance at will;

an induction motor or generator corresponds to an inductive

reactance.

The reactive coil and the polarization cell are specially suited

for series reactance, and the condenser and synchronous machine

for shunted susceptance.



CHAPTER XI

PHASE CONTROL

80. At constant voltage, e
, impressed upon a circuit, as a

transmission line, resistance, r, inserted in series with the receiv-

ing circuit, causes the voltage, e
f
at the receiver circuit to decrease

with increasing current, 7, through the resistance. The decrease

of the voltage, e, is greatest if the current, 7, is in phase with

the voltage, e less if the current is not in phase. Inductive

reactance in series with the receiving circuit, e, at constant

impressed e.m.f., e
,
causes the voltage, e, to drop less with a

unity power-factor current, 7, but far more with a lagging

current, and causes the voltage, e, to rise with a leading

current.

While series resistance always causes a drop of voltage,

series inductive reactance, x, may cause a drop of voltage or a

rise of voltage, depending on whether the current is lagging or

leading. If the supply line contains resistance, r, as well as

reactance, x, and the phase of the current, 7, can be varied

at will, by producing in the receiver circuit lagging or leading

currents, the change of voltage, e, with a change of load in

the circuit can be controlled. For instance, by changing the

current from lagging at no-load to lead at heavy load the

reactance, x, can be made to lower the voltage at light load

and raise it at overload, and so make up for the increasing drop
of voltage with increasing load, caused by the resistance, r,

that is, to maintain constant voltage, or even a voltage, e,

which rises with the load on the receiving circuit, at constant

voltage, e
,

Sit the generator side of the line. Or the wattless

component of the current can be varied so as to maintain unity

power-factor at the generator end of the line, eQ ,
etc.

This method of controlling a circuit supplied over an induc-

tive line, by varying the phase relation of the current in the

circuit, has been called "phase control," and is used to a great

extent, especially in the transmission of three-phase power for

conversion to direct current by synchronous converters for

7 97
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railroading, and in the voltage control at the receiving end of

very long high voltage transmission lines.

It requires a receiving circuit in which, independent of the

load, a lagging or leading component of current can be produced
at will. Such is the case in synchronous motors or converters:

in a synchronous motor a lagging current can be produced by
decreasing, a leading current by increasing, the field excitation.

81. .If in a direct-current motor, at constant impressed

voltage, the field excitation and therefore the field magnetism is

decreased, the motor speed increases, as the armature has to

revolve faster to consume the impressed e.m.f., and if the field

excitation is increased, the motor slows down. A synchronous

motor, however, cannot vary in speed, since it must keep in

step with the impressed frequency, and if, therefore, at constant

impressed voltage the field excitation is decreased below that

which gives a field magnetism, that at the synchronous speed
consumes the impressed voltage, the field magnetism still must

remain the same, and the armature current thus changes in

phase in such a manner as to magnetize the field and make up for

the deficiency in the field excitation. That is, the armature

current becomes lagging. Inversely, if the field excitation of the

synchronous motor is increased, the magnetic flux still must

remain the same as to correspond to the impressed voltage at

synchronous speed, and the armature current so becomes

demagnetizing that is, leading.

By varying the field excitation of a synchronous motor or

converter, quadrature components of current can be produced
at will, proportional to the variation of the field excitation from

the value that gives a magnetic flux, which at synchronous speed

just consumes the impressed voltage (after allowing for the

impedance of the motor).

Phase control of transmission lines is especially suited for

circuits supplying synchronous motors or converters; since such

machines, in addition to their mechanical or electrical load,

can with a moderate increase of capacity carry or produce con-

siderable values of wattless current. For instance, a quadrature

component of current equal to 50 per cent, of the power com-

ponent of current consumed by a synchronous motor would

increase the total current only to Vl -f 0.5 2 = 1.118, or 11.8

per cent., while a quadrature component of current equal to 30

per cent, of the power component of the current would give an



PHASE CONTROL 99

increase of 4.4 per cent, only, that is, could be carried by the

motor armature without any appreciable increase of the motor

heating.

Phase control depends upon the inductive reactance of the

line or circuit between generating and receiving voltage, e and

e, and where the inductive reactance of the transmission line

is not sufficient, additional reactance may be inserted in the

form of reactive coils or high internal reactance transformers.

This is usually the case in railway transmissions to synchronous
converters. Phase control is extensively used for voltage
control in railway power transmission by compounded syn-

chronous converters. It is also used to a considerable extent

in very long distance transmission, for controlling the voltage

and the power-factor; in a distribution system for controlling

the power-factor of the system.

While, therefore, the resistance, r, of the line is fixed, as it

would not be economical to increase it, the reactance, x, can be

increased beyond that given by line and transformer, by the

insertion of reactive coils, and therefore can be adjusted so as

to give best results in phase control, which are usually obtained

when the quadrature component of the current is a minimum.

82. Let, then,

e = voltage at receiving circuit, chosen as zero vector.

I = i ji
f = current in receiving circuit, comprising a power

component, i
}
which depends upon the load in the receiving

circuit, and a quadrature component, i'
t
which can be varied to

suit the requirements of regulation, and is considered positive

when lagging, negative when leading.

EQ
= e'o je Q

" = voltage impressed upon the system at the

generator end, or supply voltage, and the absolute value is

e, = eV + e'V.

Z = r + jx = impedance of the circuit between voltage e

and voltage e 0) and the absolute value is z = V r
2 + x2

.

If e = terminal voltage of receiving station, e = terminal

voltage of generating station, Z impedance of transmission

line; if e'= nominal induced e.m.f. of receiving synchronous

machine, that is, voltage corresponding to its field excitation,

and 6 = nominal induced e.m.f. of generator, Z also includes

the synchronous impedance of both machines, and of step-up and

step-down transformers, where used,
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It is

E = e + ZI,

or,

Eo =
(e + ri + xi

f

)
-

j(ri'
-

xi), (i)

and in absolute value we have

6
2 =

(e + ri + xi'Y + (ri
f -

xi}\ (2)

This is the fundamental equation of phase control, giving

the relation of the two voltages, e and e
,
with the two com-

ponents of current, i and i'
t
and the circuit constants r and x.

From equation (2), follows:

e = VV -
(ri

f -
xi)*

-
(ri + xi'), (3)

expressing the receiver voltage, e, as a function of e$ and I.

And:

., /eo
2

fer A 2 ex ,A ,

1 = V^-(? + v -.?
Denoting

tan = -
(5)

where is the phase angle of the line impedance, we have

r = z cos 6 and x = z sin 6 (6)

and

.. fe
2

/c cos
,

A 2 e sin ,-v
1 -v?-(-r +i

)

gives the reactive component of the current, i
f

t required by the

power component of the current, i, at the voltages, e and e .

83. The phase angle of the impressed e.m.f., E , is, from (1),

tan = :

^-T- -,' (8)
e + n + zi

the phase angle of the current

tan 0i = ^> (9)

hence, to bring the current, 7, into phase with the impressed

e.m.f., EQ, or produce unity power-factor at the generator ter-

minal, eo, it must be

$o = 0i J

hence,

e + ri
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and herefrom follows

2x

101

(10)
4 &

hence always negative, or leading*, but i' for i = 0, or at

no-load.

From equation (10) follows that i' becomes imaginary, if

the term under the square root, (e
2 4 x 2

i'
2
), becomes negative,

that is, if

that is, the maximum load, or power component of current,
at which unity power-factor can still be maintained at the

supply voltage, eQ ,
is given by

e

2000

200 400 800 1000 1-200 1400 1600 1300 2000
AMPERES LOAD *
FIG. 77.'

(11)

and the leading quadrature component of current required to

compensate for the line reactance x at maximum current, im ,
is

from equation (10),

im' = ~' (12)

that is, in this case of the maximum load which can be delivered

at e, with unity power-factor at e Q ,
the total current, /, leads

the receiver voltage, e, by 45.
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Substituting the value, i', of equation (10), which compensates
for the line reactance, x, and so gives unity power-factor at 60,

into equation (2), gives as required supply voltage CQ.

e*z*
, (x-r) (e-2

As illustration are shown, in Fig. 77, with the load current, i
f

as abscissas, the values of leading quadrature component of

current, i
f

,
and of generator voltage, e

,
for the constants

6 = 400 volts; r = 0.05 ohm, and x = 0.10 ohm.

84. More frequently than for controlling the power-factor,

phase control is used for controlling the voltage, that is, to

maintain the receiver voltage, e, constant, or raise it with in-

creasing load, i
f
at constant generator voltage, eQ .

In this case, equation (4) gives the quadrature component
of current, i

r

, required by current, i, at constant receiver vol-

tage, c, and constant generator voltage, eQ .

Since the equation (4) of i' contains a square root, the maxi-

mum value of i
t
that is, the maximum load which can be carried

at constant voltage, e and CQ, is given by equating the term under

the square root to zero

as

t
-

m =

and the corresponding quadrature component of current, by

(4), is

. ex esin0

that is, leading.

From equation (14) follows as the impedance, 2, which, at

constant line-resistance, r, gives the maximum value of im

2w = 2r- (16)
Q

and for this value of impedance, 2m, substituting in (14) and (15)

^-, and ."-- (17)
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The maximum load, i, which can be delivered at constant

voltage, e, therefore depends upon the line impedance, and the

voltages, e and eQ .

Since eQ and e are not very different from each other, the ratio
ft

- in equation (16) is approximately unity, and the impedance,
Co

2, which permits maximum load to be transmitted, is approxi-

mately twice the line resistance, r, or rather slightly less.

z < 2r,

gives

x <

A relatively low line-reactance, x, so gives maximum, output.
In practice, a far higher reactance, x, is used, since it gives

sufficient output and a lesser quadrature component of current.

By substituting i = in equation (4), the value of the quad-
rature component of current at no-load is found as

., Veo22 2 eV ex
i o

= -3

V 6 2 e2 cos2 e sin

z

This can be written in the form

(18)

.. V(e 2 - e
2
) + e2 sin2 8 e sin 6

~T
and then shows that for e = e

,
i'Q

=
0, or no quadrature com-

ponent of current exists at no-load; for e > e
,
i'Q < or nega-

tive, that is, the quadrature component of current is already

leading at no-load. For: e < e
, t'o > or lagging, that is, the

quadrature component of current i'Q is lagging at no-load, be-

comes zero at some load, and leading at still higher loads.

The latter arrangement, e < e
,
is generally used, as the quad-

rature component of current passes through zero at some inter-

mediate load, and so is less over the range of required load than

it would be if z' were or negative.

From (18) follows that the larger 2, and at constant resistance

r, also JE, the smaller the quadrature component of current.

That is, increase of the line reactance, x, reduces the quadrature
current at no-load, i'

,
and in the same way at load, that is, im-

proves the power-factor of the circuit, and so is desirable, and the

insertion of reactive coils in the line for this reason customary.
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Increase of reactance, however, reduces the maximum output
im ,

and too large a reactance is for this reason objectionable.

Let

i = ii

be the load at which the quadrature component of current

vanishes, i' = 0, that is, the receiver circuit has unity power-
factor.

Substituting i = ii, i' = into equation (2) gives

eo
2 =

(e + rii)
8 + xV (19)

and, substituting (19) in (4), (18), (14), gives

reactive component of current

., /e
2 sin2 2 6 cos 0.. -e sin

,0ft
.

*' =
>J g2

+ (*i
- + (*i

2 - *
2
)

' (20)

and at no-load

e2 sin2

V~^~ + 2^.cos0 +
.

i2
_^ (21)

Maximum output current

it/- A oti OOS 6 COS /oo\^ = \fa H :
- + *i

2 - -
(22)

85. Of importance in phase control for constant voltage, e,

at constant eQ ,
are the three currents

ii, the power component of current at which the quadra-
ture component of current vanishes: i' = 0.

im, the maximum load which can be transmitted at con-

stant voltage, e.

i'o, the reactive component of current at no-load.

The equation of phase control, (2), however, contains only two

quantities which can be chosen: The reactance, x, which can

be increased by inserting reactive coils, and the generator vol-

tage, e
,
which can be made anything desired, even with an

existing generating station, since between e and e practically

always transformers are interposed, and their ratio can be

chosen so as to correspond to any desired generator voltage, eQ ,

as they usually are supplied with several voltage steps.

Of the three quantities, ii, im and i'o, only two can be chosen,

and the constants, x and eQ ,
derived therefrom. The third

current then also follows, and if the value found for it does not

suit the requirements of the problem, other values have to be

tried. For instance, choosing i\ as corresponding to three-fourths
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load, and i'Q fairly small, gives very good power-factors over the

whole range of load, but a relatively low value of im ,
and where

very great overload capacities are required, im may not be

sufficient, and ii may have to be chosen corresponding to full-load

and a higher value of i' permitted, that is, some sacrifice made
in the power-factor, in favor of overload capacity.

So, for instance, the values may be chosen

iij corresponding to full-load,

and required that i'Q does not exceed half of full-load current;

and that the synchronous converter or motor can carry at least

100 per cent, overload, that is,

im > 2 ii.

We then can put, im 2 ii c and i'o = , (23)
C

and substitute (23) in (19), (22) and determine x, e
,

c.

86. The variation of the reactive current, i' with the load,

I, equation (4), is brought about by varying the field excitation

of the receiving synchronous machine. Where the load on the

synchronous machine is direct-current output, as in a motor

generator and especially a converter, the most convenient way
of varying the field excitation with the load is automatically,

by a series field-coil traversed by the direct-current output.

The field windings of converters intended for phase control

as for the supply of power to electric railways, from substations

fed by a high-potential alternating-current transmission line

are compound-wound, and the shunt field is adjusted for under-

excitation, so as to produce at no-load the lagging current, i'Q ,

and the series field adjusted so as to make the reactive compo-
nent of current, i', disappear at the desired load, i\.

In this case, however, the variation of the field excitation by
the series field is directly proportional to the load, as is also the

variation of i
f

,
that is, it varies from i

f
i'Q for i = 0, to i'

for i = ii, and can be expressed by the equation

(24)

(25)

=
q(ii

-
i)

where
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is the ratio of (reactive) no-load current, z'o, to (effective) non-

inductive load current, i\.

To maintain constant voltage, e, at constant, eQ ,
the required

variation of i' is not quite linear, and with a linear variation of

i', as given by a compound field-winding on the synchronous

machine, the receiver-voltage, e, at constant impressed voltage

does not remain perfectly constant, but when adjusted for the

same value at no-load and at full-load, e is slightly high at inter-

mediate loads, low at higher loads. It is, however, sufficiently

constant for all practical purposes.

Choosing then the full-load current, ilt and the no-load current,

i'o
=

qii, and let the reactive component of current, i', by a

compound field-winding vary as a linear function of the load, i:

Then, substituting ii and i' =
qii in the equations (2) for

phase control:

No-load: i = 0, i' = qii;

eo
2 =

(e + qxii)
2 + qri^. (26)

Full load: ii = i 1} i' = 0;

eo
2 =

(e + rii)* + xiS. (27)

From these equations (26) and (27) then calculate the required

reactance, x, and the generator voltage, e
,
as:

2fj. Jr.

and from (27) or (26) the voltage, eQ .

The terminal voltage at the receiving circuit then is, by equa-

tion (3) :

e = ^/eQ
2
-[qrii-(qr+x)i]

2 -
((r

-
qx)i + qxii). (29)

As an example is shown, in Fig. 78, the curve of receiving

voltage, e, with the load, i, as abscissas, for the values:

e = 400 volts at no-load and at full-load,

ii = 500 amp. at full-load, power component of current,

i'o
= 200 amp., lagging reactive or quadrature component

of current at no-load,

hence q =
0.4,

i' = 200 - 0.4
,

and r = 0.05 ohm.



PHASE CONTROL 107

From equation (28) then follows:

x = 0.381 0.165 ohm.

Choosing the lower value:

x = 0.216 ohm.

gives, from equation (27) :

e = 443.4 volts;

hence

e = \ 196,420+ 5.76 i -0.0576 z
2 -

(43.2
- 0.0264 j).

For comparison is shown, in Fig. 78, the receiving voltage, e',

at the same supply voltage, eQ = 443.4 volts, but without phase

control, that is, with a non-inductive receiver-circuit.

800

100

300 1000

FIG. 78.

87. Equation (28) shows that there are two values of x:

Xi and x2 ;
and corresponding thereto two values of e :e i and e02 ,

which as constant-supply voltage give the same receiver-voltage,

e, at no-load and at full-load, and so approximately constant

receiver-voltage throughout.

One of the two reactances, X2, is much larger than the other,

Xi, and the corresponding voltage, e 2, accordingly larger than eQ i.

In addition to the terminal voltage, e, at the receiver-circuit,

there are therefore two further points of constant voltage in the

system: eoi, distant from e by the resistance, r, and reactance,

xi f and : e^, distant from eoi by the reactance XQ = x% xi.
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That is, by the proper choice of the reactances, Xi and z
,

three points of the system can be maintained automatically at

approximately constant voltage, by phase control: e, e i and 602-

Such multiple-phase control can advantageously be employed

by using:

e as the terminal voltage of the receiving circuit,

601 as the generator terminal voltage e
,
and

602 as the nominal induced e.m.f. of the generator, that is, the

voltage corresponding to the field-excitation. Constancy of eQZ

accordingly means constant field-excitation.

That is, with constant field-excitation of the generator, the

voltage remains approximately constant, by multiple-phase con-

trol, at the generator busbars as well as at the terminals of

the receiving circuit, at the end of the transmission line of

resistance, r.

In this case:

Xi = reactance of transmission line plus reactive coils inserted

in the line (usually at the receiving station).

XQ
= #2 Xi = synchronous reactance of the generator plus

reactive coils inserted between generator and generator bus-

bars, where necessary.

Since the generator also contains a small resistance, 7*0, the

two values of reactance, x\ and #2 = x\ + XQ, are given by the

equation (28) as:

1-g*
and

Assuming in above example:

T-Q
= 0.01 ohm

gives

x2
= 0.440 ohm;

hence,

X Q
= 0.224 ohm.

The curve of nominal generated e.m.f., 602, of the generator is

shown in Fig. 78 as 02-
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That is, at constant field-excitation, corresponding to a nomi-

nal generated e.m.f.,

e02 = 488.2 volts.

The generator of synchronous impedance,

Z = r 4- jx = 0.01 -f 0.224 j ohms,

maintains approximately constant voltage at its own terminals,

or at the generator busbars,

e = 443.4 volts,

and at the same time maintains constant voltage,

e = 400 volts,

at the end of a transmission line of impedance,

Z = r + jxi = 0.06 + 0.216 j ohms,

if by phase control in the receiving circuit, by compounded
converter, the reactive or quadrature component of current,

i', is varied with the load or power component of current, i,

and proportional thereto, that is:

i' = ?0'i
-

i)

= 200 - 0.4 i.

88. To adjust a circuit experimentally for phase control

for constant voltage, by overcomppunded synchronous converter :

at constant-supply voltage and no-load on the converter with

the transmission line with its transformers, reactances, etc.,

or an impedance equal thereto, in the circuit between con-

verter and supply voltage the shunt field of the converter is

adjusted by the field rheostat so as to give the desired direct-

current voltage at the converter brushes. Then load is put on

the converter, and, without changing the supply voltage or the

adjustment of the shunt field, the rheostat or shunt across the

series field of the converter is adjusted so as to give the desired di-

rect-current voltage.

If the supply voltage can be varied, as is usually provided
for by different voltage taps on the transformer, then, before

adjusting the converter fields as described above, first the proper

supply voltage is found. This is done by loading the converter

with the current, at which unity power-factor at the converter is
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desired for instant full-load and then varying the converter

shunt field so as to get minimum alternating-current input, and

varying the supply voltage so as to get at minimum alternat-

ing-current input the desired direct-current voltage. Where
the supply voltage can only be varied in definite steps: at some

voltage step, the converter field at the desired non-inductive

load is adjusted for minimum alternating-current input;

if then the direct-current voltage is too low, the transformer

connections are changed to the next higher supply voltage

step; if the direct-current voltage is too high, the change is

made to the next lower supply voltage step, until that supply

voltage step is found, which, at the adjustment of the converter

field for minimum alternating-current input, brings the direct-

current voltage nearest to that desired. Then for this supply

voltage step, the converter field circuits are adjusted for phase

control, as above described.



SECTION III

POWER AND EFFECTIVE
CONSTANTS

CHAPTER XII

EFFECTIVE RESISTANCE AND REACTANCE

89. The resistance of an electric circuit is determined :

1. By direct comparison with a known resistance (Wheat-
stone bridge method, etc.).

This method gives what may be called the true ohmic resist-

ance of the circuit.

2. By the ratio :

Volts consumed in circuit

Amperes in circuit

In an alternating-current circuit, this method gives, not the

resistance of the circuit, but the impedance,

z = -y/r
2 + x 2

.

3. By the ratio:

Power consumed

(Current)
2

where, however, the "power" does not include the work done

by the circuit, and the counter e.m.fs. representing it, as, for

instance, in the case of the counter e.m.f. of a motor.

In alternating-current circuits, this value of resistance is the

power coefficient of the e.m.f.,

Power component of e.m.f.

Total current

It is called the effective resistance of the circuit, since it represents

the effect, or power, expended by the circuit. The power coeffi-

cient of current,
Power component of current

Total e.m.f.

is called the effective conductance of the circuit.

Ill
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In the same way, the value,

Wattless component of e.m.f.

Total current

is the effective reactance, and >

Wattless component of current= rrTT i f >

Total e.m.f.

is the effective susceptance of the circuit.

While the true ohmic resistance represents the expenditure
of power as heat inside of the electric conductor by a current

of uniform density, the effective resistance represents the total

expenditure of power.
Since in an alternating-current circuit, in general power is

expended not only in the conductor, but also outside of it,

through hysteresis, secondary currents, etc., the effective resist-

ance frequently differs from the true ohmic resistance in such

way as to represent a larger expenditure of power.
In dealing with alternating-current circuits, it is necessary,

therefore, to substitute everywhere the values
"
effective re-

sistance,"
"
effective reactance/' "effective conductance/' and

"
effective susceptance," to make the calculation applicable to

general alternating-current circuits, such as inductive reactances

containing iron, etc.

While the true ohmic resistance is a constant of the circuit,

depending only upon the temperature, but not upon the e.m.f.,

etc., the effective resistance and effective reactance are, in gen-

eral, not constants, but depend upon the e.m.f., current, etc.

This dependence is the cause of most of the difficulties met in

dealing analytically with alternating-current circuits containing

iron.

90. The foremost sources of energy loss in alternating-current

circuits, outside of the true ohmic resistance loss, are as follows:

1. Molecular friction, as,

(a) Magnetic hysteresis;

(6) Dielectric hysteresis.

2. Primary electric currents, as,

(a) Leakage or escape of current through the insulation,

brush discharge, corona.

(b) Eddy currents in the conductor or unequal current

distribution.
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3. Secondary or induced currents, as,

(a) Eddy or Foucault currents in surrounding magnetic

materials;

. (b) Eddy or Foucault currents in surrounding conducting
materials

;

(c) Secondary currents of mutual inductance in neighboring

circuits.

4. Induced electric charges, electrostatic induction or influence.

While all these losses can be included in the terms effective

resistance, etc., the magnetic hysteresis and the eddy currents

are the most frequent and important sources of energy loss.

Magnetic Hysteresis

91. In an alternating-current circuit surrounded by iron or

other magnetic material, energy is expended outside of the con-

ductor in the iron, by a kind of molecular friction, which, when
the energy is supplied electrically, appears as magnetic hysteresis,

and is caused by the cyclic reversals of magnetic flux in the iron

in the alternating magnetic field.

To examine this phenomenon, first a circuit may be con-

sidered, of very high inductive reactance, but negligible true

ohrnic resistance; that is, a circuit entirely surrounded by iron,

as, for instance, the primary circuit of an alternating-current

transformer with open secondary circuit.

The wave of current produces in the iron an alternating mag-
netic flux which generates in the electric circuit an e.m.f. the

counter e.m.f. of self-induction. If the ohmic resistance is

negligible, that is, practically no e.m.f. consumed by the resist-

ance, all the impressed e.m.f. must be consumed by the counter

e.m.f. of self-induction, that is, the counter e.m.f. equals the

impressed e.m.f.; hence, if the impressed e.m.f. is a sine wave,

the counter e.m.f., and, therefore, the magnetic flux which

generates the counter e.m.f., must follow a sine wave also. The

alternating wave of current is not a sine wave in this case, but is

distorted by hysteresis. It is possible, however, to plot the cur-

rent wave in this case from the hysteretic cycle of magnetic flux.

From the number of turns, n, of the electric circuit, the effective

counter e.m.f., E, and the frequency, /, of the current, the maxi-

mum magnetic flux, $, is found by the formula:

E = VZirnf 10- 8
;
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hence,

A maximum flux, <J>, and magnetic cross-section, A, give the

maximum magnetic induction, B = -r-
A.

If the magnetic induction varies periodically between + B
and B, the magnetizing force varies between the corresponding
values + / and /, and describes a looped curve, the cycle of

hysteresis.

If the ordinates are given in lines of magnetic force, the

abscissas in tens of ampere-turns, then the area of the loop

equals the energy consumed by hysteresis in ergs per cycle.

From the hysteretic loop the instantaneous value of magnetiz-

ing force is found, corresponding to an instantaneous value of

magnetic flux, that is, of generated e.m.f.; and from the mag-

netizing force, /, in ampere-turns per units length of magnetic

circuit, the length, /, of the magnetic circuit, and the number
of turns, n, of the electric circuit, are found the instantaneous

values of current, i, corresponding to a magnetizing force, /,

that is, magnetic induction, B, and thus generated e.m.f., e, as:

92. In Fig. 79, four magnetic cycles are plotted, with maximum
.values of magnetic induction, B = 2,000, 6,000, 10,000, and 16,-

000, and corresponding maximum magnetizing forces, / =
1.8,

2.8, 4.3, 20.0. They show the well-known hysteretic loop, which

becomes pointed when magnetic saturation is approached.
These magnetic cycles correspond to sheet iron or sheet steel,

of a hysteretic coefficient, rj
= 0.0033, and are given with

ampere-turns per centimeter as abscissas, and kilolines of mag-
netic force as ordinates.

In Figs. 80 and 81, the curve of magnetic induction as derived

from the generated e.m.f. is a sine wave. For the different values

of magnetic induction of this sine curve, the corresponding values

of magnetizing force /, hence of current, are taken from Fig. 79,

and plotted, giving thus the exciting current required to produce
the sine wave of magnetism; that is, the wave of current which

a sine wave of impressed e.m.f. will establish in the circuit.
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FIG. 79. Hysteretic cycle of sheet iron.
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As shown in Figs. 80 and 81, these waves of alternating current

are not sine waves, but are distorted by the super-position of

higher harmonics, and are complex harmonic waves. They
reach their maximum value at the same time with the maximum of

magnetism, that is, 90 ahead of the maximum generated e.m.f.,

and hence about 90 behind the maximum impressed e.m.f., but

pass the zero line considerably ahead of the zero value of magne-
tism, of 42, 52, 50 and 41, respectively.

FIG. 81.

The general character of these current waves is, that the maxi-

mum point of the wave coincides in time with the maximum
point of the sine wave of magnetism; but the current wave is

bulged out greatly at the rising, and hollowed in at the decreasing,

side. With increasing magnetization, the maximum of the cur-

rent wave becomes more pointed, as shown by the curves of

Fig. 81, for B = 10,000; and at still higher saturation a peak is
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formed at the maximum point, as in the curve for B = 16,000.

This is the case when the curve of magnetization reaches within

the range of magnetic saturation, since in the proximity of

saturation the current near the maximum point of magnetization
has to rise abnormally to cause even a small increase of magneti-
zation. The four curves, Figs. 80 and 81 are not drawn to the

same scale. The maximum values of magnetizing force, corre-

sponding to the maximum values of magnetic induction, B =

2,000, 6,000, 10,000, and 16,000 lines of force per square centi-

meter, are/ = 1.8, 2.8, 4.3, and 20.0 ampere-turns per centimeter.

In the different diagrams these are represented in the ratio of

8:6:4:1, in order to bring the current curves to approximately
the same height. The magnetizing force, in c.g.s. units, is

H = 47T/10/ = 1.257/.

93. The distortion of the current waves, /, in Figs. 80 and 81,

is almost entirely due to the magnetizing current, and is caused

by the disproportionality between magnetic induction, B, and

magnetizing force, /, as exhibited by the magnetic characteristic

or saturation curve, and is very little due to hysteresis.

Resolving these curves, /, of Figs. 80 and 81 into two com-

ponents, one in phase with the magnetic induction, J5, or sym-
metrical thereto, hence in quadrature with the induced e.m.f.,

and therefore wattless: the magnetizing current, im ;
and the

other, in time quadrature with the magnetic induction, B, hence

in phase, or symmetrical, with the generated e.m.f., that is,

representing power: the hysteresis power-current, fa. Then we
see that the hysteresis power-current, fa }

is practically a sine

wave, while the magnetizing current, im ,
differs considerably

from a sine wave, and tends toward peakedness the more the

higher the magnetic induction, J5, that is, the more magnetic
saturation is approached, so that for B = 16,000 a very high

peak is shown, and the wave of magnetizing current, im ,
does

not resemble a sine wave at all, but at the maximum value is

nearly four times higher than a sine wave of the same instan-

taneous values near zero induction would have.

These curves of hysteresis power-current, fa t
and magnetiz-

ing current, im ,
derived by resolving the distorted current

curves, /, of Figs. 80 and 81, are plotted in Fig. 82, the last one,

corresponding to B = 16,000, with one-quarter the ordinates of

the first three.
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As curves, symmetrical with regard to the maximum value of

B im ,
and to the zero value of B 4 ,

these curves are

constructed thus:

Let

& = B sin = sine wave of magnetic induction,

2.0

1.0

-1.0

-2.0

2.0

1
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94. The distortion of the wave of magnetizing current is as

large as shown here only in an iron-closed magnetic circuit

expending power by hysteresis only, as in an ironclad trans-

former on open secondary circuit. As soon as the circuit ex-

pends power in any other way, as in resistance or by mutual

\

\
\

\

FIG. 83. Distortion of current wave by hysteresis.

inductance, or if an air-gap is introduced in the magnetic circuit,

the distortion of the current wave rapidly decreases and practi-

cally disappears, and the current becomes more sinusoidal.

That is, while the distorting component remains the same, the

sinusoidal component of the current greatly increases, and ob-
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scures the distortion. For example, in Fig. 83, two waves are

shown corresponding in magnetization to the last curve of

Fig. 80, as the one most distorted. The first curve in Fig. 83

is the current wave of a transformer at 0.1 load. At higher

loads the distortion is correspondingly still less, except where the

magnetic flux of self-induction, that is, flux passing between

primary and secondary and increasing in proportion to the load,

is so large as to reach saturation, in which case a distortion

appears again and increases with increasing load. The second

curve of Fig. 83 is the exciting current of a magnetic circuit

containing an air-gap whose length equals J^oo the length of the

magnetic circuit. These two curves are drawn to one-third the

size of the curve in Fig. 80. As shown, both curves are practir

cally sine waves. The sine curves of magnetic flux are shown
dotted as 0.

96. The distorted wave of current can be resolved into two

components: A true sine wave of equal effective intensity and

equal power to the distorted wave, called the equivalent sine wave,

and a wattless higher harmonic, consisting chiefly of a term of

triple frequency.
In Figs. 80, 81 and 83 are shown, as /, the equivalent sine

waves, and as i, the difference between the equivalent sine

wave and the real distorted wave, which consists of wattless

complex higher harmonics. The equivalent sine wave of m.m.f.

or of current, in Figs. 80 and 81, leads the magnetism in time

phase by 34, 44, 38, and 15.5, respectively. In Fig. 83 the

equivalent sine wave almost coincides with the distorted curve,

and leads the magnetism by only 9 degrees.

It is interesting to note that even in the greatly distorted

curves of Figs. 80 and 81 the maximum value of the equivalent

sine wave is nearly the same as the maximum value of the

original distorted wave of m.m.f., so long as magnetic saturation

is not approached, being 1.8, 2.9, and 4.2, respectively, against

1.8, 2.8, and 4.3, the maximum values of the distorted curve.

Since, by the definition, the effective value of the equivalent sine

wave is the same as that of the distorted wave, it follows that

this distorted wave of exciting current shares with the sine wave
the feature, that the maximum value and the effective value

have the ratio of -\/2 -f- 1. Hence, below saturation, the maxi-

mum value of the distorted curve can be calculated from the

effective value which is given by the reading of an electro-
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dynamometer by using the same ratio that applies to a true

sine wave, and the magnetic characteristic can thus be deter-

mined by means of alternating currents, with sufficient exact-

ness, by the electrodynamometer method, in the range below

saturation, that is, by alternating-current voltmeter and ammeter.

f i

i

(^1,000 2,000^,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000 13,000 14,000 15,000 16,000 17,000.

FIG. 84. Magnetization and hysteresis curve.

96. In Fig. 84 is shown the true magnetic characteristic of

a sample of average sheet iron, as found by the method of slow

reversals with the magnetometer; for comparison there is shown

in dotted lines the same characteristic, as determined with

alternating currents by the electrodynamometer, with ampere-
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turns per centimeter as ordinates and magnetic inductions as

abscissas. As represented, the two curves practically coincide

up to a value of B = 13,000; that is, up to fairly high inductions.

For higher saturations, the curves rapidly diverge, and the elec-

trodynamometer curve shows comparatively small magnetizing
forces producing apparently very high magnetizations.

The same Fig. 84 gives the curve of hysteretic loss, in ergs

per cubic centimeter and cycle, as ordinates, and magnetic
inductions as abscissas.

The electrodynamometer method of determining the magnetic
characteristic is preferable for use with alternating-current

apparatus, since it is not affected by the phenomenon of mag-
netic "creeping," which, especially at low densities, may in the

magnetometer tests bring the magnetism very much higher, or

the magnetizing force lower, than found in practice in alter-

nating-current apparatus.
So far as current strength and power consumption are con-

cerned, the distorted wave can be replaced by the equivalent
sine wave and the higher harmonics neglected.

All the measurements of alternating currents, with the single

exception of instantaneous readings, yield the equivalent sine

wave only, since all measuring instruments give either the mean

square of the current wave or the mean product of instantaneous

values of current and e.m.f., which, by definition, are the same
in the equivalent sine wave as in the distorted wave.

Hence, in most practical applications it is permissible to

neglect the higher harmonics altogether, and replace the dis-

torted wave by its equivalent sine wave, keeping in mind,

however, the existence of a higher harmonic as a possible dis-

turbing factor which may become noticeable in those cases where

the frequency of the higher harmonic is near the frequency of

resonance of the circuit, that is, in circuits containing conden-

sive as well as inductive reactance, or in those circuits in which

the higher harmonic of currrent is suppressed, and thereby the

voltage is distorted, as discussed in Chapter XXV.
97. The equivalent sine wave of exciting current leads the

sine wave of magnetism by an angle QJ, which is called the angle

of hysteretic advance of phase. Hence the current lags behind

the e.m.f. by the time angle (90 a), and the power is, therefore,

P = IE cos (90
-

a) = IE sin a.
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Thus the exciting current, /, consists of a power component,
/ sin a, called the hysteretic or magnetic power current, and

a wattless component, / cos a, which is called the magnetizing

current. Or, conversely, the e.m.f. consists of a power compo-

nent, E sin CL, the hysteretic power component, and a wattless

component, E cos a, the e.m.f. consumed by self-induction.

Denoting the absolute value of the impedance of the circuit,

E
Y> by z where z is determined by the magnetic characteristic

of the iron and the shape of the magnetic and electric circuits

the impedance is represented, in phase and intensity, by the

symbolic expression,

Z = r + jx z sin a + jz cos a.
;

and the admittance by,

1 .1
Y =

g fo
= - sm o: j- cos a = y sin a jy cos a.

The quantities z, r, x, and y, g, b are, however, not constants

as in the case of the circuit without iron, but depend upon the

intensity of magnetization, B that is, upon the e.m.f. This

dependence complicates the investigation of circuits containing

iron.

In a circuit entirely inclosed by iron, a is quite considerable,

ranging from 30 to 50 for values below saturation. Hence,

even with negligible true ohmic resistance, no great lag can be

produced in ironclad alternating-current circuits.

98. The loss of energy by hysteresis due to molecular magnetic
friction is, with sufficient exactness, proportional to the 1.6th

power of magnetic induction, B. Hence it can be expressed

by the formula:

WH =
r]B

l -

where

WH loss of energy per cycle, in ergs or (c.g.s.) units (= 10~ 7

joules) per cubic centimeter,

B = maximum magnetic induction, in lines of force per sq. cm.,

and 17
= the coefficient of hysteresis.

This I found to vary in iron from 0.001 to 0.0055. As a safe

mean, 0.0033 can be accepted for common annealed sheet iron

or sheet steel, 0.002 for silicon steel and 0.0010 to 0.0015 for

specially selected low hysteresis steel. In gray cast iron, r/ averages
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0.013; it varies from 0.0032 to 0.028 in cast steel, according to

the chemical or physical constitution; and reaches values as high

as 0.08 in hardened steel (tungsten and manganese steel). Soft

nickel and cobalt have about the same coefficient of hysteresis

as gray cast iron; in magnetite I found 17
= 0.023.

In the curves of Figs. 79 to 84, rj
= 0.0033.

At the frequency, /, the loss of power in the volume, V, is, by
this formula,

p =
77/751-6 10~ 7 watts

jj
10-7

watts,

where A is the cross-section of the total magnetic flux, <.

The maximum magnetic flux, <, depends upon the counter

e.m.f. of self-induction,

E = \/27rfn3> 10~ 8
,

tfW
2wfn'

where n = number of turns of the electric circuit, / = frequency.

Substituting this in the value of the power, P, and canceling,

we get,

E 1 - 6 V IP5 - 8 E 1 ' 6 F103
t~

"n

JUG" 2- 8
ir

l - GA 1 - 6n 1 - 6
~~

^^ToTe" ^i.e^i.e*

or

MM- 6
, 71058 7103

P =
.Qg ,

where K =
^QO.S 1.6.41.6 i.e

= 58?? . 16 K6 ;

y
or, substituting rj

= 0.0033, we have K =
191.4^ L61>6

;

or, substituting V = Al, where I = length of magnetic circuit,

58,,110' _~

and

P =
/O.G^O.Gyjl.G

In Figs. 85, 86, and 87 is shown a curve of hysteretic loss,

with the loss of power as ordinates, and

in curve 85, with the e.m.f., E }
as abscissas,

for Z = 6, A =
20, / = 100, and n = 100;

in curve 86, with the number of turns as abscissas, for

I = 6, A = 20, / = 100, and E = 100;
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in curve 87, with the frequency,/, or the cross-section, A, as

abscissas, for I = 6, n = 100, and E = 100.

As shown, the hysteretic loss is proportional to the 1.6
th
power

of the e.m.f., inversely proportional to the 1.6
th

power of the

number of turns, and inversely proportional to the 0.6
th

power
of the frequency and of the cross-section.

RELATION BETWEEN N AND P
FOR A = 20, Z=6,n-iOO.E=100

200
= FREQUENCY

FIG. 87.

400

99. If g = effective conductance, the power component of a

current is / = Eg, and the power consumed in a conductance, g,

is p = IE = E2
g.

Since, however,
#1.6 #1.6

P = K f06 ,
we have K

it is:

ytw

I

From this we have the following deduction:

The effective conductance due to magnetic hysteresis is propor-

tional to the coefficient of hysteresis, 77,
and to the length of the mag-

netic circuit, I, and inversely proportional to the OAth

power of the

e.m.f., to the 0.6
th

power of the frequency, f, and of the cross-section
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of the magnetic circuit, A, and to the 1.6
th

power of the number of

turns, n.

Hence, the effective hysteretic conductance increases with

decreasing e.m.f., and decreases with increasing e.m.f.; it varies,

however, much slower than the e.m.f., so that, if the hysteretic

conductance represents only a part of the total power consump-

tion, it can, within a limited range of variation as, for instance,

in constant-potential transformers be assumed as constant

without serious error.

218

<>
14

12

10

RELATION BETWEEN 3 AND E

FORZ = 6,/=100 A=20,w=100

50 100 150 200
E

250

FIG. 88.

300 350 400

In Figs. 88, 89, and 90, the hysteretic conductance, g, is

plotted, for I = 6, E = 100, / = 100, A = 20 and n = 100,

respectively, with the conductance, g, as ordinates, and with

E as abscissas in Curve 88.

/ as abscissas in Curve 89.

n as abscissas in Curve 90.

As shown, a variation in the e.m.f. of 50 per cent, causes a

variation in g of only 14 per cent., while a variation in / or A by
50 per cent, causes a variation in g of 21 per cent.

If (R = magnetic reluctance of a circuit, FA = maximum
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RELATION BETWEEN AND N

FOR J=6,E=100, A = 20, n = 100

400

FIG. 89.

90

75

70

65

60

55

50

045

I"
35

30

25

20

15

10

6

RELATION BETWEEN n AND a

FOR f=6.E-100,/=100, A=20

100 150 200 250 300

W=NUMBER OF TURNS

FIG. 90.

400



EFFECTIVE RESISTANCE AND REACTANCE 129

m.m.f., / = effective curren.t, since J\/2 = maximum current,

the magnetic flux,

==

(R (R

Substituting this in the equation of the counter e.m.f. of self-

induction,

E = V27r/n3>l(T
8

,

we have

E "

hence, the absolute admittance of the circuit is

/ (RIO8

where
108

a = ~
2>
a constant.

Therefore, the absolute admittance, y, of a circuit of negligible

resistance is proportional to the magnetic reluctance, (R, and in-

versely proportional to the frequency, f, and to the square of the

number of turns, n.

100. In a circuit containing iron, the reluctance, (R, varies with

the magnetization; that is, with the e.m.f. Hence the admittance

of such a circuit is not a constant, but is also variable.

In an ironclad electric circuit that is, a circuit whose mag-
netic field exists entirely within iron, such as the magnetic cir-

cuit of a well-designed alternating-current transformer (R is

the reluctance of the iron circuit. Hence, if /*
= permeability

since

- -%-
and

FA = IF =
^.IH

= m.m.f.,

< = A(B = nAH = magnetic flux,

and
10 1 .

(R = T -r'

substituting this value in the equation of the admittance,

(RIO8
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we have
no9

c_

y-STrWuAf-fn'
where

10 127 1 105

"
n*A

Therefore, in an ironclad circuit, the absolute admittance, y, is

inversely proportional to the frequency, f, to the permeability, p, to

the cross-section, A, and to the square of the number of turns, n\
and directly proportional to the length of the magnetic circuit

}
I.

The conductance is

K .

y
~
fo^E

-*'

and the admittance,

hence, the angle of hysteretic advance is

g
sln a = =

or, substituting for A and c (119),

r,l IP
5 - 8

Q a -
A- 6n 1 - 6

1 109

- 4n- 4A - 4
7r-

4 22 - 2

or, substituting

E = 2- 5
7r/nA(BlO~

8

,

we have
4Msm a = ^>

which is independent of frequency, number of turns, and shape
and size of the magnetic and electric circuit.

Therefore, in an ironclad inductance, the angle of hysteretic ad-

vance, a, depends upon the magnetic constants, permeability and

coefficient of hysteresis, and upon the maximum magnetic induction,

but is entirely independent of the frequency, of the shape and other

conditions of the magnetic and electric circuit,' and, therefore, all

ironclad magnetic circuits constructed of the same quality of iron

and using the same magnetic density, give the same angle of hys-

teretic advance, and the same power factor of their electric energizing

circuit.
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The angle of hysteretic advance, a, in a closed circuit trans-

former and the no-load power factor, depend upon the quality of the

iron, and upon the magnetic density only.

The sine of the angle of hysteretic advance equals 4 times the

product of the permeability and coefficient of hysteresis, divided by
the . 4th

power of the magnetic density.

101. If the magnetic circuit is not entirely ironclad, and the

magnetic structure contains air-gaps, the total reluctance is

the sum of the iron reluctance and of the air reluctance, or

(R = (Ri + (Ra ;

hence the admittance is
%

*

y = Vg2 + &2 =
(<JU + (R).

Therefore, in a circuit containing iron, the admittance is the
/ /Q .

~p j

/ /Q .

sum of the admittance due to the iron part of the circuit, ?/
= ~

and of the admittance due to the air part of the circuit, y

if the iron and the air are in series in the magnetic circuit.

The conductance, g, represents the loss of power in the iron,

and, since air has no magnetic hysteresis, is not changed by the

introduction of an air-gap. Hence the angle of hysteretic

advance of phase is

Vi (Rt + <Ra

and a maximum, ,
for the ironclad circuit, but decreases with

Vi

increasing width of the air-gap. The introduction of the air-

gap of reluctance, (Ra ,
decreases sin a in the ratio,

(Hi

In the range of practical application, from B = 2,000 to

B = 14,000, the permeability of iron usually exceeds 1,000, while

sin a in an ironclad circuit varies in this range from 0.51 to 0.69.

In air, /*
= 1.

If, consequently, 1 per cent, of the length of the iron consists

of an air-gap, the total reluctance only varies by a few per cent.,

that is, remains practically constant; while the angle of hysteretic

advance varies from sin a = 0.035 to sin a = 0.064. Thus g

is negligible compared with 6
;
and b is practically equal to y.
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Therefore, in an electric circuit containing iron, but forming
an open magnetic circuit whose air-gap is not less than 34oo the

length of the iron, the susceptance is practically constant and

equal to the admittance, so long as saturation is not yet ap-

proached, or,

, <Ra /
= r or: * = ^

The angle of hysteretic advance is small, and the hysteretic con-

ductance is

K

The current wave is practically a sine wave.

As an example, in Fig. 83, Curve II, the current curve of a

circuit is shown, containing an air-gap of only 34 oo of the length
of the iron, giving a current wave much resembling the sine

shape, with an hysteretic advance of 9.
102. To determine the electric constants of a circuit con-

taining iron, we shall proceed in the following way:

Let

E = counter e.m.f. of self-induction

then from the equation,

E = V2 7rn/$10-
8
,

where / = frequency, n = number of turns,

we get the magnetism, <l>,
and by means of the magnetic cross-

&
section, A, the maximum magnetic induction: B = -T-

From B, we get, by means of the magnetic characteristic of

the iron, the magnetizing force,
= / ampere-turns per centimeter

length where

if H = magnetizing force in c.g.s. units.

Hence,

if h = length of iron circuit, F =
lif

= ampere-turns required

in the iron;

if la = length of air circuit, Fa = ~r~~ ampere-turns required

in the air:
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hence, F = F* + Fa = total ampere-turns, maximum value, and
F
.= = effective value. The exciting current is

V2

w\/2

and the absolute admittance,

y = = -

If F is not negligible as compared with Fa ,
this admittance, y,

is variable with the e.m.f., E.

If V = volume of iron, 77
= coefficient of hysteresis,

the loss of power by hysteresis due to molecular magnetic
friction is

P m 77/FS
1 - 6

;

p
hence the hysteretic conductance is g =

,
and variable with

the e.m.f., E.

The angle of hysteretic advance is

sin a = -;
y

the susceptance.

the effective resistance,

and the reactance,

X =
2

y
2

103. As conclusions, we derive from this chapter the following:

1. In an alternating-current circuit surrounded by iron, the

current produced by a sine wave of e.m.f. is not a true sine wave,

but is distorted by Hysteresis, and inversely, a sine wave of

current requires waves of magnetism and e.m.f. differing from

sine shape.

2. This distortion is excessive only with a closed magnetic
circuit transferring no energy into a secondary circuit by mutual

inductance.

3. The distorted wave of current can be replaced by the equiva-

lent sine wave that is, a sine wave of equal effective intensity

and equal power and the superposed higher harmonic, con-
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sisting mainly of a term of triple frequency, may be neglected

except in resonating circuits.

4. Below saturation, the distorted curve of current and its

equivalent sine wave have approximately the same maximum
value.

5. The angle of hysteretic advance that is, the phase dif-

ference between the magnetic flux and equivalent sine wave of

m.m.f. is a maximum for the closed magnetic circuit, and

depends there only upon the magnetic constants of the iron, upon
the permeability, ju, the coefficient of hysteresis, r?, and the maxi-

mum magnetic induction, as shown in the equation,

4 AIT;
sin a =

g^j-

6. The effect of hysteresis can be represented by an admittance

Y = g jb, or an impedance, Z = r + jx.

7. The hysteretic admittance, or impedance, varies with

the magnetic induction; that is, with the e.m.f., etc.

8. The hysteretic conductance, g, is proportional to the

coefficient of hysteresis, rj, and to the length of the magnetic

circuit, I, inversely proportional to the 0.4
th

power of the e.m.f.

E, to the 0.6
th

power of frequency, /, and of the cross-section of

the magnetic circuit, A, and to the 1.6
th
power of the number of

turns of the electric circuit, n, as expressed in the equation,

58 7,1 10
3

9
"

^0.4/0.6^0.6^1.6*

9. The absolute value of hysteretic admittance,

y =

is proportional to the magnetic reluctance: (R = (R + (Ra ,
and

inversely proportional to the frequency, /, and to the square of

the number of turns, n, as expressed in the equation,

_ ((Rj + (Ra) 108

y =

2irfn*

10. In an ironclad circuit, the" absolute value of admittance

is proportional to the length of the magnetic circuit, and inversely

proportional to cross-section, A, frequency, /, permeability, n
and square of the number of turns, n, or

127 Z 105

Vi

11. In an open magnetic circuit, the conductance, g, is the

same as in a closed magnetic circuit of the same iron part.
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12. In an open magnetic circuit, the admittance, y, is prac-

tically constant, if the length of the air-gap is at least ^oo of the

length of the magnetic circuit, and saturation be not approached.

13. In a closed magnetic circuit, conductance, susceptance,

and admittance can be assumed as constant through a limited

range only.

14. From the shape and the dimensions of the circuits, and

the magnetic constants of the iron, all the electric constants, g, 6,

y,r,x, z, can be calculated.

104. The preceding applies to the alternating magnetic circuit,

that is, circuit in which the magnetic induction varies between

equal but opposite limits: BI = + B Q and B 2
= B Q .

In a pulsating magnetic circuit, in which the induction B varies

between two values BI and B 2} which are not equal numerically,

and which may be of the same sign or of opposite sign, that is

in which the hysteresis cycle is unsymmetrical, the law of the

1.6
th

power still applies, and the loss of energy per cycle is pro-

portional to the 1.6
th

power of the amplitude of the magnetic

variation :

but the hysteresis coefficient t] is not the same as for alternating

magnetic circuits, but increases with increasing average value
P i p

'-^
-- of the magnetic induction.

Zi

Such unsymmetrical magnetic cycles occur in some types of

induction alternators,
1 in which the magnetic induction does not

reverse, but pulsates between a high and a low value in the

same direction.

Unsymmetrical magnetic cycles occasionally occur and give

trouble in transformers by the entrance of a stray direct current

(railway return) over the ground connection, or when an unsuit-

able transformer connection is used on a synchronous converter

feeding a three-wire system.

Very unsymmetrical cycles may give very much higher losses

than symmetrical cycles of the same amplitude.

For more complete discussion of unsymmetrical cycles see

"Theory and Calculation of Electric Circuits."

1 See "Theory and Calculation of Electric Apparatus."



CHAPTER XIII

FOUCAULT OR EDDY CURRENTS

105. While magnetic hysteresis due to molecular friction is a

magnetic phenomenon, eddy currents are rather an electrical

phenomenon. When iron passes through a magnetic field, a

loss of energy is caused by hysteresis, which loss, however,
does not react magnetically upon the field. When cutting an

electric conductor, the magnetic field produces a current therein.

The m.m.f. of this current reacts upon and affects the magnetic

field, more or less; consequently, an alternating magnetic field

cannot penetrate deeply into a solid conductor, but a kind of

screening effect is produced, which makes solid masses of iron

unsuitable for alternating fields, and necessitates the use of

laminated iron or iron wire as the carrier of magnetic flux.

Eddy currents are true electric currents, though existing in

minute circuits; and they follow all the laws of electric circuits.

Their e.m.f. is proportional to the intensity of magnetization,

B, and to the frequency, /.

Eddy currents are thus proportional to the magnetization,
B

y
the frequency, /, and to the electric conductivity, X, of the

iron; hence, can be expressed by

i = b\Bf.

The power consumed by eddy currents is proportional to

their square, and inversely proportional to the electric conduc-

tivity, and can be expressed by

P =

or, since Bf is proportional to the generated e.m.f., E, in the

equation
E = VZirAufBlQ-*,

it follows that, The loss of power by eddy currents is proportional

to the square of the e.m.f., and proportional to the electric con-

ductivity of the iron; or,

P = aEz\.

136
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Hence, that component of the effective conductance which

is due to eddy currents is

P
== W2

=
'

that is, The equivalent conductance due to eddy currents in the

iron is a constant of the magnetic circuit; it is independent of

e.m.f., frequency, etc., but proportional to the electric conductivity

of the iron, X.

Eddy currents, like magnetic hysteresis, cause an advance of

phase of the current by an angle of advance, /? ;
but unlike

hysteresis, eddy currents in general do not distort the current

wave.

The angle of advance of phase due to eddy currents is

sin p = -
,

where y = absolute admittance of the circuit, g = eddy current

conductance.

While the equivalent conductance, g, due to eddy currents,
is a constant of the circuit, and independent of e.m.f., frequency,

etc., the loss of power by eddy currents is proportional to the

square of the e.m.f. of self-induction, and therefore proportional
to the square of the frequency and to the square of the

magnetization.

Only the power component, gE, of eddy currents, is of interest,

since the wattless component is identical with the wattless com-

ponent of hysteresis, discussed in the preceding chapter.
106. To calculate the loss of power by eddy currents,

Let V = volume of iron
;

B = maximum magnetic 'induction;

/ = frequency;
X = electric conductivity of iron;

c = coefficient of eddy currents.

The loss of energy per cubic centimeter, in ergs per cycle, is

w =
eX/

2
;

hence, the total loss of power by eddy currents is

P = eXF/
2B 2 10-7

watts,

and the equivalent conductance due to eddy currents is

P_ IQeXZ 0.507 \l
g ~

E2
~

2ir2An 2
~

An 2
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where

I = length of magnetic circuit,

A = section of magnetic circuit,

n = number of turns of electric circuit.

The coefficient of eddy currents, e, depends merely upon the

shape of the constituent parts of the magnetic circuit; that is,

whether of iron plates or wire, and the thickness

of plates or the diameter of wire, etc.

The two most important cases are:

(a) Laminated iron.

(6) Iron wire.

107. (a) Laminated Iron.

Let, in Fig. 91,

d = thickness of the iron plates;

B = maximum magnetic induction;

/ = frequency;
X = electric conductivity of the iron.

Then, if u is the distance of a zone, du, from

the center of the sheet, the conductance of a

zone of thickness, du, and of one centimeter

length and width is \du; and the magnetic flux

cut by this zone is Bu. Hence, the e.m.f.

induced in this zone is

5E = \/2 irfBu, in c.g.s. units. FIG. 91.

This e.m.f. produces the current, dl = dE \du = \/2 irfB udu,
in c.g.s. units, provided the thickness of the plate is negligible as

compared with the length, in order that the current may be

assumed as parallel to the sheet, and in opposite directions on

opposite sides of the sheet.

The power consumed by the current in this zone, du, is

dP = dEdl = 27T2
/

2 2Xw2
dtt,

in c.g.s. units or ergs per second, and, consequently, the total

power consumed in one square centimeter of the sheet of thick-

ness, d, is

d
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the power consumed per cubic centimeter of iron is, therefore,

5P Tr
2
f

2B 2\d~ .

p = T = --~
--

,
in c.g.s. units or erg-seconds,

and the energy consumed per cycle and per cubic centimeter of

iron is

pw =
j

--

g
--

ergs.

The coefficient of eddy currents for laminated iron is, therefore,

TT
2d2

e =
-g-

= 1.645 d2
,

where X is expressed in c.g.s. units. Hence, if X is expressed in

practical units or 10~ 9
c.g.s. units,

Substituting for the conductivity of sheet iron the approxi-
mate value.

X = 105
,

1

we get as the coefficient of eddy currents for laminated iron,

e = ^ d2 10~ 9 = 1.645 d2 10~ 9
;

loss of energy per cubic centimeter and cycle,

W = e\fB
2 =

^ d 2
\fB

2 10~ 9 = 1.645 d*\fB
2 10~ 9

ergs

= 1.645 d2
fB*lQ-* ergs;

or, W = eX/
210- 7 = 1.645 d2

/
210-n joules.

The loss of power per cubic centimeter at frequency, /, is

p = fW = eXfB^O-7 = 1.645 d2
/
2 210-" watts;

the total loss of power in volume, V, is

P = Vp = 1.645 Vd2
f
2B 210-n watts.

As an example,

d = 1 mm. = 0.1 cm.;/ = 100; B = 5,000; V = 1,000 c.c.;

e = 1,645 X 10-";
W =

4,1 10 ergs
= 0.000411 joules;

p = 0.0411 watts;
P = 41.4 watts.

1 In some of the modern silicon steels used for transformer iron, X reaches

values as low as 2 X 10 4
,
and even lower; and the eddy current losses are

reduced in the same proportion (1915).
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108. (6) Iron Wire.

Let, in Fig. 92, d = diameter of a piece of iron wire; then if

u is the radius of a circular zone of thickness, du, and one cen-

timeter in length, the conductance of this zone is ~
,
and the

magnetic flux inclosed by the zone is Bu*ir.

FIG. 92.

Hence, the e.m.f. generated in this zone is

BE = \/2ir
2fBu2 in c.g.s. units,

and the current produced thereby is

\fBu du, in c.g.s. units.
i

The power consumed in this zone is, therefore,

dP = 8EdI =
Tr*\f*B

2us
du, in c.g.s. units;

consequently, the total power consumed in one centimeter length

of wire is

=
(

2

dW = T^XPB 2
(

,
in c.g.s. units.

Since the volume of one centimeter length of wire is

(Pr

T'
the power consumed in one cubic centimeter of iron is

p = -- = \f*B
2d2

,
in c.g.s. units or erg-seconds,
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and the energy consumed per cycle and cubic centimeter of iron is

w = = x/B2rf2 ergs *

Therefore, the coefficient of eddy currents for iron wire is

e = |?<fi
= 0.617 d 2

;

= ^ d2 10~ 9 - 0.617 d2 10~ 9
.

or, if X is expressed in practical units, or 10~ 9
c.g.s. units,

Substituting
X = 10 5

,

we get as the coefficient of eddy currents for iron wire,

e = ^ d2 10~ 9 = 0.617 d2 10~ 9
.

16

The loss of energy per cubic centimeter of iron, and per cycle,

becomes

W = eX/
2 = ~ d2

\fB
2 10- 9 = 0.617 d2

\fB
2 10~ 9

= 0.617 d2fB 2 10~4
ergs,

= eX/5
2 10~ 7 = 0.617 d2fB 2 W~n joules;

loss of power per cubic centimeter at frequency, /,

p = fW = t\N 2B 2 10-7 = 0.617 d2N 2B 2 10~n watts;

total loss of power in volume, V,

p = Vp = 0.617 Vd^B 2 10- 11 watts.

As an example,

d = 1 mm., = 0.1 cm.; / = 100; B 2 = 5,000; V =1,000 cu. cm.

Then,
e = 0.617 X 10- 11

,

W = 1,540 ergs = 0.000154 joules,

p = 0.0154 watts,

P = 1.54 watts,

hence very much less than in sheet iron of equal thickness.

109. Comparison of sheet iron and iron wire.

If

di = thickness of lamination of sheet iron, and

dz = diameter of iron wire,
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the eddy current coefficient of sheet iron being

6! = ^ dS 10- 9
,

and the eddy current coefficient of iron wire

the loss of power is equal in both other things being equal if

ci = 2 ;
that is, if

d2
2 = %di*, or d2

= 1.63 di.

It fojlows that the diameter of iron wire can be 1.63 times or,

roughly, 1% as large as the thickness of laminated iron, to give

the same loss of power through eddy currents, as shown in Fig.

93.

FIG. 93.

110. Demagnetizing, or screening effect of eddy currents.

The formulas derived for the coefficient of eddy currents in

laminated iron and in iron wire hold only when the eddy currents

are small enough to neglect their magnetizing force. Other-

wise the phenomenon becomes more complicated; the magnetic
flux in the interior of the lamina, or the wire, is not in phase with

the flux at the surface, but lags behind it. The magnetic flux

at the surface is due to the impressed m.m.f., while the flux in the

interior is due to the resultant of the impressed m.m.f. and to the

m.m.f. of eddy currents; since the eddy currents lag 90 degrees

behind the flux producing them, their resultant with the

impressed m.m.f., and therefore the magnetism in the interior,

is made lagging. Thus, progressing from the surface toward

the interior, the magnetic flux gradually lags more and more in

phase, and at the same time decreases in intensity. While the

complete analytical solution of this phenomenon is beyond the
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scope of this book, a determination of the magnitude of this

demagnetization, or screening effect, sufficient to determine

whether it is negligible, or whether the subdivision of the iron

has to be increased to make it negligible, can be made by calcu-

lating the maximum magnetizing effect, which cannot be exceeded

by the eddys.

Assuming the magnetic density as uniform over the whole

cross-section, and therefore all the eddy currents in phase with

each other, their total m.m.f. represents the maximum possible

value, since by the phase difference and the lesser magnetic

density in the center the resultant m.m.f. is reduced.

In laminated iron of thickness d, the current in a zone of thick-

ness du, at distance u from center of sheet, is

dl = \/2 irfB\u du units (c.g.s.)

= \/2 TtfB\u du 10~8
amp.;

hence the total current in the sheet is

ri ri
I =

I
dl = \/2 7r/X 10~ 8

I u du
Jo Jo

Hence, the maximum possible demagnetizing ampere-turns,

acting upon the center of the lamina, are

1(T 8 = 0.555/Xd 2 1(T 8
,o

= 0.555 fB\d2 10~ 8
ampere-turns per cm.

Example: d = 0.1 cm.,/ =
100, B = 5000, X = 10 5

,

or / = 2.775 ampere-turns per cm.

111. In iron wire of diameter d, the current in a tubular zone

of du thickness and u radius is

dl = -
irfBXu du 10~8

amp.;

hence, the total current is

8 y uI = dl = ~TrfB\ 10~8 u dx

A/2=-T- 7r/Xd
2 10~ 8

amp.
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Hence, the maximum possible demagnetizing ampere-turns,

acting upon the center of the wire, are

/ = /Xd2 10-8 = 0.2775 fB\d* 10~ 8

= 0.2775 fB\d2 10~ 8
ampere-turns per cm.

For example, if d = 0.1 cm.,/ = 100, B = 5000, X = 105
,
then

/ = 1.338 ampere-turns per cm.; that is, half as much as in a

lamina of the thickness d.

For a more complete investigation of the screening effect of

eddy currents in laminated iron, see Section III of
"
Theory and

Calculation of Transient Electric Phenomena and Oscillations.
"

112. Besides the eddy, or Foucault, currents proper, which

exist as parasitic currents in the interior of the iron lamina or

wire, under certain circumstances eddy currents also exist in

larger orbits from lamina to lamina through the whole magnetic
structure. Obviously a calculation of these eddy currents is

possible only in a particular structure. They are mostly surface

currents, due to short circuits existing between the laminae at

the surface of the magnetic structure.

Furthermore, eddy currents are produced outside of the mag-
netic iron circuit proper, by the magnetic stray field cutting

electric conductors in the neighborhood, especially when drawn

toward them by iron masses behind, in electric conductors

passing through the iron of an alternating field, etc. All these

phenomena can be calculated only in particular cases, and are of

less interest, since they can and should be avoided.

The power consumed by such large eddy currents frequently

increases more than proportional to the square of the voltage,

when approaching magnetic saturation, by the magnetic stray

field reaching unlaminated conductors, and so, while negligible

at normal voltage, this power may become large at over-normal

voltage.

Eddy Currents in Conductor, and Unequal Current Distribution

113. If the electric conductor has a considerable size, the

alternating magnetic field, in cutting the conductor, may set

up differences of potential between the different parts thereof,

thus giving rise to local or eddy currents in the copper. This

phenomenon can obviously be studied only with reference to a
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particular case, where the shape of the conductor and the dis-

tribution of the magnetic field are known.

Only in the case where the magnetic field is produced by the

current in the conductor can a general solution be given. The

alternating current in the conductor produces a magnetic field,

not only outside of the conductor, but inside of it also; and the

lines of magnetic force which close themselves inside of the con-

ductor generate e.m.fs. in their interior only. Thus the counter

e.m.f. of self-induction is largest at the axis of the conductor, and
least at its surface; consequently, the current density at the sur-

face will be larger than at the axis, or, in extreme cases, the cur-

rent may not penetrate at all to the center, or a reversed current

may exist there. Hence it follows that only the exterior part
of the conductor may be used for the conduction of electricity,

thereby causing an increase of the ohmic resistance due to unequal
current distribution. *

The general discussion of this problem, as applicable to the

distribution of alternating current in very large conductors,
as the iron rails of the return circuit of alternating-current rail-

ways, is given in Section III of
"
Theory and Calculation of Tran-

sient Electric Phenomena and Oscillations."

In practice, this phenomenon is observed mainly with very

high frequency currents, as lightning discharges, wireless tele-

graph and lightning arrester circuits; in power-distribution cir-

cuits it has to be avoided by either keeping the frequency suffi-

ciently low or having a shape of conductor such that unequal
current-distribution does not take place, as by using a tubular or a

flat conductor, or several conductors in parallel.

114. It will, therefore, here be sufficient to determine the

largest size of round conductor, or the highest frequency, where
this phenomenon is still negligible.

In the interior of the conductor, the current density is not

only less than at the surface, but the current lags in phase be-

hind the current at the surface, due to the increased effect of

self-induction. This time-lag of the current causes the magnetic
fluxes in the conductor to be out of phase with each other, making
their resultant less than their sum, while the lesser current density
in the center reduces the total flux inside of the conductor. Thus,
by assuming, as a basis for calculation, a uniform current density
and no difference of phase between the currents in the different

layers of the conductor, the unequal distribution is found larger
10
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than it is in reality. Hence this assumption brings us on the safe

side, and at the same time greatly simplifies the calculation;

however, it is permissible only where the current density is still

fairly uniform.

Let Fig. 94 represent a cross-section of a conductor of radius,

R, and a uniform current density,
. 7

where 7 = total current in conductor.

The magnetic reluctance of a tubular

zone of unit length and thickness du,
~

of radius u, is

2 UTT
(R,

du

FIG. 94.

The current inclosed by this zone is 7M
= iu 2

ir, and therefore, the m.m.f. acting

upon this zone is

Fu = 0.4 irlu = 0.4 7r
2m 2

,

and the magnetic flux in this zone is

d& = - = 0.27riu du.

Hence, the total magnetic flux inside the conductor is

From this we get, as the excess of counter e.m.f. at the axis of

the conductor over that at the surface,

A# = V2Trf3> 10~ 8 = \/2 irfl 10~ 9
, per unit length, .

= V2^fiR 2 10~ 9
;

and the reactivity, or specific reactance at the center of the con-

ductor, becomes k

A
Tjl

- - = A/2 ?r
2/# 2 10~ 9

.

Let p =
resistivity, or specific resistance, of the material of the

conductor.

We have then,

and
P

p

the ratio of current densities at center and at periphery.
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For example, if, in copper, p = 1.7 X 10~ 6
,
and the percentage

decrease of current density at center shall not exceed 5 per cent.,

that is,

P * \A 2 + p
2 = 0.95 -r- 1,

we have

k = 0.51 X 10~ 6
;

hence

0.51 X 10~ 6 = V2ir2/R 8 10~9
,

or

fR* = 36.3;

hence, when

/ = 125 100 60 25

R = 0.541 0.605 0.781 1.21 cm.

D = 2R = 1.08 1.21 1.56 2.42 cm.'

Hence, even at a frequency of 125 cycles, the effect of unequal
current distribution is still negligible at one centimeter diameter

of the conductor. Conductors of this size are, however, excluded

from use at this frequency by the external self-induction, which
is several times larger than the resistance. We thus see that un-

equal current distribution is usually negligible in practice.

The above calculation was made under the assumption that

the conductor consists of unmagnetic material. If this is not

the case, but the conductor of iron of permeability

M, then d3> = ^-
Ji

;
and thus ultimately, k = \/2 ir

zfaR z 10~ 9
,and

CKw

- = \/2 7T
2

. Thus, for instance, for iron wire at p =
P P

10 X 10~6
, p = 500, it is, permitting 5 per cent, difference be-

tween center and outside of wire, k = 3.2 X 10~6
,
and fR 2 =

0.46;

hence, when

/ = 125 100 60 25

fl = 0.061 0.068 0.088 0.136cm.;

thus the effect is noticeable even with relatively small iron wire.

Mutual Induction

115. When an alternating magnetic field of force includes a

secondary electric conductor, it -generates therein an e.m.f. which

produces a current, and thereby consumes energy if the circuit

of the secondary conductor is closed.
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Particular cases of such secondary currents are the eddy or

Foucault currents previously discussed.

Another important case is the generation of secondary e.m.fs.

in neighboring circuits; that is, the interference of circuits run-

ning parallel with each other.

In general, it is preferable to consider this phenomenon of

mutual induction as not merely producing a power component
and a wattless component of e.m.f. in the primary conductor,
but to consider explicitly both the secondary and the primary

circuit, as will be done in the chapter on the alternating-current

transformer.

Only in cases where the energy transferred into the secondary
circuit constitutes a small part of the total primary energy, as in

the discussion of the disturbance caused by one circuit upon a

parallel circuit, may the effect on the primary circuit be con-

sidered analogously as in the chapter on eddy currents by the

introduction of a power component, representing the loss of

power, and a wattless component, representing the decrease of

self-induction.

Let

x =
2-n-fL

= reactance of main circuit; that is, L = total num-
ber of interlinkages with the main conductor, of the lines of

magnetic force produced by unit current in that conductor;

Xi = 2irfLi = reactance of secondary circuit; that is, LI =

total number of interlinkages with the secondary conductor, of

the lines of magnetic force produced by unit current in that con-

ductor;
xm 2-n-fLi

= mutual inductive reactance of the circuits;

that is, Lm = total number of interlinkages with the secondary

conductor, of the lines of magnetic force produced by unit cur-

rent in the main conductor, or total number of interlinkages

with the main conductor of the lines of magnetic force produced

by unit current in the secondary conductor.

Obviously: xm2 ^ xxi.
1

1 As self-inductance L, LI, the total flux surrounding the conductor is here

meant. Usually in the discussion of inductive apparatus, especially of trans-

formers, as the self-inductance of circuit is denoted that part of the mag-
netic flux which surrounds one circuit but not the other circuit; and as

mutual inductance flux which passes between both circuits. Hence, the

total self-inductance, L, is in this case equal to the sum of the self-induc-

tance, LI, and mutual inductance, Lm .

The object of this distinction is to separate the wattless part, LI, of the
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Let ri = resistance of secondary circuit. Then the imped-
ance of secondary circuit is

Zi = n + jxi, zi = \A*i
2 + zi

2
;

e.m.f. generated in the secondary circuit, EI = jxml,

where / = primary current. Hence, the secondary current is

T.
J.

and the e.m.f. generated in the primary circuit by the secondary

current, /i, is

or, expanded,

2 \ 2 ~H o T [ f
/

Hence, the e.m.f. consumed thereby,

E" / =
(r + jx)L

m
2 ^_ ^

= effective resistance of mutual inductance;

" * 3* ^7*i

o

m
o
= effective reactance of mutual inductance.

The susceptance of mutual inductance is negative, or of opposite

sign from the reactance of self-inductance. Or,

Mutual inductance consumes energy and decreases the self-in-

ductance.

For the calculation of the mutual inductance between circuits

Lm ,
see

" Theoretical Elements of Electrical Engineering,"

4th Ed.

total self-inductance, L, from that part, Lm ,
which represents the transfer of

e.m.f. into the secondary circuit, since the action of these two components is

essentially different.

Thus, in alternating-current transformers it is customary and will be

done later in this book to denote as the self-inductance, L, of each circuit

only that part of the magnetic flux produced by the circuit which passes
between both circuits, and thus acts in "choking" only, but not in trans-

forming; while the flux surrounding both circuits is called the mutual induc-

tance, or useful magnetic flux.

With this denotation, in transformers the mutual inductance, Lm ,
is

usually very much greater than the self-inductance, L', and L/, while, if

the self-inductance, L and LI, represent the total flux, their product is larger

than the square of the mutual inductance, Lm ;
or

LLi ^ Lm 2; (L' + Lm ) (L/ + Lm ) > Lm *.



CHAPTER XIV

DIELECTRIC LOSSES

Dielectric Hysteresis

116. Just as magnetic hysteresis and eddy currents give a

power component in the inductive reactance, as "effective

resistance," so the energy losses in the dielectric lead to a power
component in the condensive reactance, which may be repre-

sented by an "effective resistance of dielectric losses" or an

"effective conductance of dielectric losses."

In the alternating magnetic field, power is consumed by mag-
netic hysteresis. This is proportional to the frequency, and to

the 1.6
th

power of the magnetic density, and is considerable,

amounting in a closed magnetic circuit to 40 to 60 per cent, of the

total volt-amperes.
In the dielectric field, the energy losses usually are very much

smaller, rarely amounting to more than a few per cent., though

they may at high temperature in cables rise as high as 40 to 60

per cent. The foremost such losses are: leakage, that is, i
2r loss

of the current passing by conduction (as
"
dynamic current")

through the resistance of the dielectric; corona, that is, losses

due to a partial or local breakdown of the electrostatic field,

and dielectric hysteresis or phenomena of similar nature.

It is doubtful whether a true dielectric hysteresis, that is, a

molecular dielectric friction, exists. A dielectric loss, propor-
tional to the frequency and to the 1.6

th
power of the dielectric

field:

P = n/D
1 - 6

has been observed in rotating dielectric fields, but is so small,

that it usually is overshadowed by the other losses.

In alternating dielectric fields in solid materials, such as in

condensers, coil insulation, etc., a loss is commonly observed

which gives an approximately constant power-factor of the elec-

tric energizing circuit, over a wide range of voltage and of fre-

quency, from less than a fraction of 1 per cent, up to a few per

cent.

150
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Constancy of the power-factor with the frequency, means that

the loss is proportional to the frequency, as the current i, and
thus the volt-ampere input, ei, are proportional to the frequency.

Constancy of the power-factor with the voltage, means that the

loss is proportional to the square of the voltage, as the current i is

proportional to the voltage, and the volt-ampere input ei thus

proportional to the square of the voltage. This loss thus would
be approximated by the expression :

P =
rjfD*

and thus seems to be akin to magnetic hysteresis, except that at

least a part of this dielectric loss is possibly consumed in chemical

and mechanical disintegration of the insulating material, while

the magnetic hysteresis loss is entirely converted to heat.

Leakage

117. The eddy current losses in the magnetic field are the i*r

loss of the currents flowing in the magnetic material, and as such

are proportional to the square of the frequency and of the mag-
netic density:

where 7 = conductivity of the magnetic material.

This expression obviously holds only as long as the m.m.f. of

the eddy currents is not sufficient to appreciably affect the mag-
netic flux distribution.

As corresponding hereto in the dielectric field may be con-

sidered the conduction loss through the resistance of the

dielectric.

In a homogeneous dielectric of electric conductivity 7 (usually

very low) and specific capacity or permittivity k, if:

I = thickness of the dielectric,

A = area or cross-section,

e = impressed alternating-current voltage, effective value,

the dielectric capacity of the material is:

kA_
I

and the capacity susceptance:



152 ALTERNATING-CURRENT PHENOMENA

hence the current passing through the dielectric as capacity
current or

"
displacement current," is:

2irfkA
^o = eo 2 irfCe

= -* e

The conductance of the dielectric is:

hence, the current, conducted through the dielectric, or leakage
current:

TA= eg = -y

thus, the total current:

here the j denotes, that the current component I Q is in quadrature
ahead of the voltage e.

The absolute value of the current thus is:

and the power consumption:

.P = eii =

or, since the dielectric density D is proportional to the voltage
/>

gradient j
and the permittivity:

D = k
,

(where v = 3 X 10 10 = velocity of light, see
"
Theoretical Ele-

ments of Electrical Engineering.")

Thus:

P = - V

^jf-
where

V = Al = volume

The power-factor then is:

P
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Or, if, as usually the case, the conductivity 7 is small compared
with the susceptivity 2 wfk :

P =
2tfk

that is, the power-factor is inverse proportional to the frequency.
The observation of leakage losses and leakage resistance thus is

best made at low frequencies or at direct-current voltage.

While, however, in magnetic materials the conductivity 7 is

fairly constant, varying only with the temperature, like that of

all metals, the very low conductivity of the dielectric is often not

even approximately constant, but may vary with the tempera-

ture, the voltage, etc., sometimes by many thousand per cent.

118. While in a homogeneous dielectric field, the leakage cur-

rent power losses are independent of the frequency and herein

differ from the magnetic eddy current losses, which latter are

proportional to the square of the frequency, in non-homogene-
ous dielectric fields, leakage current losses may depend on the

frequency.
As an instance, let us consider a dielectric consisting of two

layers of different constants, for instance, a layer of mica and a

layer of varnished cloth, such as is sometimes used in high-

voltage armature insulation.

Let 71 = electric conductivity,

ki = permittivity or specific capacity,

li
= thickness and,

A i
= area or section

of the first layer of the dielectric, and

72, &2, /2, A Z

the corresponding values of the second layer.

It is then :

yA
g =

j-
= electric conductance

kA
C =

-y
= electrostatic capacity of the layer .

of dielectric, hence:

2wfkA
b =

2irfC =
^

= capacity susceptance, and
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Y = g + jb = admittance, thus :

Z =y = r jx = impedance, where:

r = -g
= vector resistance (not ohmic resistance,

but energy component of impedance, (2)

k
see paragraph 89.)

x =
2
= vector reactance, and

y =
-y/fir

2 + fr
2 = absolute admittance,

(z
= \/r2 + x2 = absolute impedance.)

If then, EI = potential drop across the first, E 2
= potential

drop across the second layer of dielectric,

E = EI -{- E 2
= voltage impressed upon the dielectric. (3)

The current i, which traverses the dielectric, partly by con-

duction through its resistance, partly by capacity as displace-

ment current, then is the same in both layers, as they are in

series in the dielectric field, and it is:

EI =
i(ri

-
jxi)

E 2
=

i(r2 jx2)

and, by (3):

or, absolute :

E r2)
- x2) }

r2)

Thus, the current:

V (ri + r2)
2 + (xi +

the apparent power, or volt-ampere input:

e
2

Q = ei =
r2)

the power consumed in the dielectric is:

P = i(fl 4. r2)

e2
(ri + r 2 )

(r, (x,

and the power-factor:

(4)

(6)

(6)

(7)

(8)

(9)

(10)Q V(ri + r2)
2 + (Xl + *2)

2

119. Let us consider some special cases:

(a) If the conductivity, 71 and y 2) of the two layers of dielectric
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is so small that the conduction current, ge, is negligible compared
with the capacity current, 2-jrfCe.

In this case, r\ and r% are negligible compared with xi and x 2 ,

and it is:

e

P_ c y* i ~r 1 z

/ I _ V

P =

(11)

Substituting now for the ^impedance quantities Z r jx,

which have no direct physical meaning in the dielectric field, the

admittance quantities Y = g + jb, which have the physical

meaning that g is the effective ohmic conductance, b the capacity

susceptance, it is:

g negligible compared with b and y, and b =
y.

Thus, by (2) :

06162 2irfCiCze
i ^

=
~r i n (12)

_~

hence proportional to the frequency /:

P = 4-
(13)

hence, the loss of power by current leakage in the dielectric in this

case is independent of the frequency.

UQ Oi C/ 2 C/ 1

_
gi

6"i
+ g*

62 _
gi

C[
+ g

*C~* (14)

6l + 62 27T/(C 1 +C 2)

hence, in this case the power-factor is inverse proportional to the

frequency.

(6) If in both layers the leakage current is large compared with

the capacity current, that is, 2irfCe negligible compared with ge.

In this case, Xi and x% are negligible compared with r\ and r2 ,

and:

Q =
(15)
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and as in this case n and r 2 are the effective ohmic resistance of

the dielectric, all the quantities are independent of the frequency;
that is, the case is one of simple conduction.

120 (c) If in the first layer the leakage is negligible compared
with the capacity current, but is not negligible in the second

layer. That is, in a two-layer insulation, one layer leaks badly.

Assuming for simplicity that the two layers have the same

capacity, C = Ci = C2 . If the two capacities are unequal, the

treatment is analogous, but merely the equations somewhat more

complicated.
Let the conductance of the second layer =

g, the capacity

susceptance 2 irfC b.

It is then:

7*1 negligible compared with the other quantities.

g

g* +
l

b

b

(16)

Substituting these values in equations (7) (8) (9) (10) gives:

e(g* + b2
) e(g* + (27r/C)

2
)

V
26\

~
I g 4*/C\

2
(17)

7
e*(g* + b2

) e*(g* + (27T/C)
2
)"

As seen, in this case current, power loss and power-factor depend
on the frequency, but in a more complex manner.

With changing values of the conductance from low values,

where g is negligible compared with the other terms, but the other

terms negligible compared with
, up to high conductivity, where

1 .
**

is negligible, but the terms with g predominate, the current

changes from:
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low g:

i = jrfCe,

proportional to the frequency, to:

high g:

i = 2TrfCe.

Again proportional to the frequency, but twice as large, and at

intermediate values of g, the current changes more rapidly than

proportional to the frequency. The loss o] power changes from:

low g:

or independent of the frequency, to:

high g:

p =
9

or proportional to the square of the frequency. The power-factor

changes from:

low g:

'

or inverse proportional to the frequency, to:

high g:

27T/C
P- ~>

or proportional to the frequency.
And over a considerable range of intermediate values of conduct-

ance, g, the power-factor, therefore, remains approximately con-

stant; or, inversely, with changing frequency and constant g and

by the power-factor changes from proportionality with the fre-

quency at low frequencies, up to inverse proportionality at high

frequencies, and thereby passes through a maximum.
The value of g, for which the power-factor in equation (19) is

a maximum, is found by differentiating: -j- =
0, as:

g = 2V2 irfC (20)

and this maximum power-factor is PQ = %.
For C2 > Ci, higher, for C2 < Ci, lower values of power-factor

maximum result, where C2 is the leaky dielectric.
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As illustration, Fig. 95 gives the values of power-factor, p, from

g
as abscissae.equation (19), as function of

jr
=

A dielectric circuit, in which the power-factor decreases with

increasing frequency, for instance, is that of the capacity of the

transmission line; a dielectric circuit, in which the power-factor

increases with the frequency, is that of the aluminum-cell light-

ning arrester.

121. As seen, in the dielectric circuit, that is, in insulators

in which the current is essentially a displacement current, the

35

10

7

.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.5 7.0 7.5

FIG. 95.

relations between voltage, current, power, phase angle and power-
factor can be represented by the same symbolic equations as the

relations between voltage, current, power and power-factor in

metallic conductors, in which the current flow is dynamic, by the

introduction of the effective admittance of the dielectric circuit, or

part of circuit:

Y = g + jb,

where g is the effective conductance of the dielectric circuit, or

the energy component of the admittance, representing the energy

consumption by leakage, dielectric hysteresis, corona, etc., and b

= 2 TT/C is the capacity susceptance. Instead of the admittance

Y, its reciprocal, the impedance Z = r jx, may be used.

The main differences between the dielectric and the electro-

dynamic circuit are:

In the dielectric circuit, the susceptance, b, is positive, the

reactance, x, negative; the current normally leads the voltage,
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that is, capacity effects predominate and inductive effects are

usually absent.

In the dynamic circuit, the reactance, x, usually is positive,

the susceptance, b, negative; the current usually lags, that is,

inductive effects predominate and capacity effects are usually

absent.

In the dielectric circuit, the admittance terms, Y = g + jb, have

a physical meaning as the effective conductance and the capacity

susceptance, 2 irfC, but the impedance terms, Z = r jx, are only
derived quantities, without direct physical meaning: the vector

resistance, r, is not the effective ohmic resistance of the dielectric,

-, but is also depending on the capacity, r =
2 _,

, 2 ,
and the

vector reactance, x, is not the condensive reactance, r- == ~ T^>
^ ZTTJO

but also depends on the conductance, x =
2 ,

, 2
*

In the dynamic circuit, the impedance terms, Z r + jx, have

a direct physical meaning, as effective ohmic resistance, r, and

as self-inductive reactance, 2irfL, while the admittance terms,

Y = g jb, are derived quantities, and the vector conductance, g,

is not the reciprocal of the resistance, r, the vector susceptance, 6,

not the reciprocal of the reactance, x, as discussed in preceding

chapters.

Physically, the most prominent difference between the dielec-

tric circuit and the dynamic circuit is that for the displacement
current of the dielectric circuit, that is, for the electrostatic flux,

all space is conducting, while for the dynamic current, most

materials are practically non-conductors, and the dynamic circuit

thus is sharply defined in the extent of the flow of the current,

while the dielectric circuit is not. The dielectric circuit thus is

similar to the magnetic circuit; for the magnetic circuit all space
is conducting also, that is, can carry magnetic flux. An unin-

sulated submarine electric circuit would be more nearly similar,

in the distribution of current flow, to the dielectric and the mag-
netic circuit.

In the electric circuit, the conductor through which the cur-

rent flows is generally sharply defined and of a uniform section,

which is small compared with the length, and the conductor thus

can be approximated as a linear conductor, that is, the cur-

rent distribution throughout the conductor section assumed as

uniform. With the dielectric and the magnetic circuit this is
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rarely the case, and such circuits thus have to be investigated
from place to place across the section of the current flow. This

brings in the consideration of dielectric current density or dielec-

tric flux density, and corresponding thereto magnetic flux den-

sity, as commonly used terms, while dynamic current density,

that is, current per unit section of conductor, is far less frequently
considered.

Thus, in the dielectric circuit, instead of admittance Y =

g + jb, commonly the admittance per unit section and unit

length of the dielectric circuit, or the admittivity, v = 7 j0,

has to be considered, where 7 = conductivity of the dielectric

(or effective conductivity, including all other energy losses), and

/8
= 2irfk = susceptivity, where k = permittivity or specific

capacity of the material.

We then have:

5 >

4i<

122. With the extended industrial use of very high voltage,

the explicit study of the dielectric field has become of importance,
and it is not safe merely to consider the thickness of the insulation

in relation to the voltage impressed upon it.

In an ununiform electric conductor, the relation of the voltage
to the length of the conductor does not determine whether the

conductor is safe or whether locally, due to small cross-section or

high resistivity, unsafe current densities may cause destructive

heating, but the adaptability of the conductor to the current

carried by it must be considered throughout its entire length.

So in the dielectric field, the thickness of the dielectric may be

such that the voltage impressed upon it may give a very safe

average voltage gradient or average dielectric flux density, and
the dielectric nevertheless may break down, due to local concen-

tration of the dielectric flux density in the insulating material.

Thus, for instance, in the dielectric field between parallel con-

ductors, at a voltage far below that which would jump from

conductor to conductor, locally at the conductor surface the

concentration of electrostatic stress exceeds the dielectric strength

of air, and causes it to break down as corona. In solid dielectrics,

under similar conditions, the breakdown due to local over-stress
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often may change the flux distribution so as to gradually extend

throughout the entire dielectric, until puncture results.

Corona

123. In the magnetic field, with increasing magnetizing force,

/, or magnetic field intensity, H, the magnetic flux density, B,

increases, but for high field intensities the flux density ceases to

be even approximately proportional to the field intensity, and

finally, at very high field intensities, H, the "metallic magnetic

induction," B Q
= B H, reaches a finite limiting value, which

with iron is not far from BQ 20,000, the so-called
"
saturation

value."

In the dielectric field, with increasing voltage gradient, gr, or

dielectric field intensity, K, the dielectric flux density, D, increases

proportional thereto, until a finite limiting field intensity, K0) or

voltage gradient, g ,
is reached, beyond which the dielectric cannot

be stressed, but breaks down and becomes dynamically conduct-

ing, that is, punctures, and thereby short-circuits the dielectric

field.

The voltage gradient, gQ ,
at which disruption of the dielectric

occurs is called the "disruptive strength" or "dielectric

strength" of the dielectric. With air at atmospheric pressure

and temperature, it is go 30 kv. per centimeter. Thus under

alternating electric stress, air punctures at 21 kv. effective per

centimeter (

7^
\ . The dielectric strength of air is over a very

wide range proportional to the air density, and thus proportional
to the barometric pressure and inverse proportional to the abso-

lute temperature. Air is one of the weakest dielectrics, and

liquids and still more solids show far higher values of dielectric

strength, up to and beyond a million volts per centimeter.

124. If then in a uniform dielectric field, such as that between

parallel plates A and B as shown in Fig. 96, the voltage is gradu-

ally increased, as soon as the voltage maximum reaches a gradi-

ent of 0o
= 30 kv. in the gap between the metal plates, the air

in this gap ceases to sustain the voltage, a spark passes, usually

followed by the arc, and the potential difference across this gap

drops from g l where I is the distance between the metal plates

A and B to practically nothing, and the electric circuit thereby
ceases to include a dielectric field.

11
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Assuming now that the gap between the metal plates does not

contain a homogeneous dielectric, but one consisting of several

layers of different dielectric strength and different permittivity.
For instance, we put two glass plates, a and b

}
of thickness 1 into

the gap, as shown in Fig. 97, thereby leaving an air space, c, of

I 2 1Q . The dielectric flux density in the field is still uniform

\ /
Al IB

/ V

FIG. 96. FIG. 97.

throughout the field section, but the voltage gradient in the

different layers, a, b and c, is not the same, is not the average gra-
g

dient, g = -y , of the gap, but is inverse proportional to the permit-

tivities :

1 .

where A; is the permittivity of the layers, a and 6, k\ the permit-

tivity of the layer c (
=

1, if this layer is air). The potential

drop across a and b thus is l gQ) across c is (I 2 1 )g^ and the

total voltage thus:

e = 2 IQ gQ + (I 2 Wfifi,
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g\k\
or, substituting g Q

= -r gives:

hence:

e ek(

-
i

2 !.(*,-*)+ ft

and

Depending on the values of k\ and fco, either g$ or <7i may be higher

than the average gradient

e

9 ~r
To illustrate on a numerical instance:

Let the distance between the metal plates A and B be I = 1 cm.

With nothing but air at atmospheric pressure and temperature
between the plates, the gap would break down by a spark dis-

charge, and short-circuit the circuit of Fig. 96; at e = 30 kv.

maximum, and at e = 25 kv., no discharge would occur.

Assuming now two glass plates, a and b, each of 0.3 cm. thick-

ness and permittivity /c =
4, were inserted, leaving an air-gap

of 0.4 cm. of permittivity ki = 1. At e = 25 kv. the gradients

thus would be, by above equation:
In the glass plates:

g\
= 8.4 kv. per cm.

In the air-gap:

go
= 35.7 kv. per cm.

The air would thus be stressed beyond its dielectric strength,

and would break down by spark discharge. This would drop
the gradient in the air down to practically g'o 0, and the

gradient in the glass plates thus would become :

/ ^" i

jfi
=

Q-Z
= 41.7 kv. per cm.

Thus the insertion of the glass plates would cause the air-gap

to break down. The dynamic current which flows through the

air-gap in this case would not be the short-circuit current of the
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electric circuit, as would be the case in the absence of the glass

plates but it would merely be the capacity current of the glass

plates; and it would not be followed by the arc, but passes as a

uniform bluish glow discharge, or as pink streamers corona.

125. If the dielectric field is not uniform, but varying in density

as, for instance, the field between two spheres or the field between

two parallel wires, then with increasing voltage the breakdown

gradient will not be reached simultaneously throughout the en-

tire field, as in a uniform field, but it is first reached in the denser

portion of the field at the surface of the spheres or parallel wires,

where the lines of dielectric force converge. Thus the dielectric

will first break down at the denser portion of the field, and short-

circuit these portions by the flow of dynamic current. This,

however, changes the voltage gradient in the rest of the field,

and may raise it so as to break down the entire field, or it may not

do so.

FIG. 98.

O
FIG. 99.

For instance, in the dielectric field between two spheres at

distance I from each other, as shown in Figs. 98 and 99, with in-

creasing potential difference, e, finally the breakdown gradient of

the air, gQ
= 30 kv. = cm., is reached at the surface of the spheres,

and up to a certain distance 6 beyond it, and in this space d the

air breaks down, becomes conducting, and the space up to the

distance d is filled with corona. As the result, the conducting
terminals of the dielectric field are not the original spheres, but the

entire space filled by the corona, that is, the terminals are in-

creased in size, and the convergency of the dielectric flux lines,

that is, the voltage gradient at the effective terminals, is reduced.

At the same time the gap between the effective terminals is re-

duced by 25, and the average voltage gradient thereby increased.
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If the latter effect is greater as is the case with large spheres at

short distance from each other the air becomes over-stressed at

the edge d of the corona formed by the original field, the corona

spreads farther, and so on, until the entire field breaks down, that

is, no stable corona forms, but immediate disruptive discharge.

Inversely, with small spheres at considerable distance from each

other, the formation of corona very soon increases the size of the

effective terminals so as to bring the voltage gradient at the edge
of the corona down to the disruptive gradient, g ,

and the corona

spreads no farther. In this case then, with increasing voltage,

at a certain voltage, e
,
corona begins to form at the terminals,

first as bluish glow, then as violet streamers, which spread farther

and farther with increasing voltage, until finally the disruptive

spark passes' between the terminals. In this case, corona pre-

cedes the disruptive discharge.

Experience shows that the voltage, ev ,
at which corona begins

at the surface is not the voltage at which the breakdown gradient

of air, gQ
= 30, is reached at the sphere surface, but ev is the vol-

tage at which the breakdown gradient, go, has extended up to a

certain small but definite distance the "
energy distance" from

the spheres. That is, dielectric breakdown of the air requires a

finite volume of over-stressed air, that is, a finite amount of di-

electric energy. As the result, when corona begins, the gradient

at the terminal surface, gv ,
is higher than the breakdown gradi-

ent, 0o, the more so the more the flux lines converge, that is,

the smaller the spheres (or parallel wires) are.

126. With the development of high-voltage transmission at

100 kv. and over, the electrical industry has entered the range of

voltage, where corona appears on parallel wires of sizes such

as are industrially used. Such corona consumes power, and

thereby introduces an energy component into the expression of

the line capacity, a corona conductance.

The power consumption by the corona is approximately

proportional to the frequency, its power factor therefore inde-

pendent of the frequency.

The power consumption by the corona is proportional to the

square of the excess voltage over that voltage, e
,
which brings the

dielectric field at the conductor surface up to the breakdown

gradient, g .

However, corona does not yet appear at the voltage, e
,
which

produces the breakdown gradient, g ,
at the conductor surface,
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but at the higher voltage, ev ,
which has extended the breakdown

gradient by the energy distance from the conductor surface.

Then the corona power begins with a finite value, and in the

range between e and ev it is indefinite, depending on the surface

condition of the conductor.

The equations of the power consumption by corona in parallel

conductors are:

where :

P = power loss in kilowatts per kilometer length of single-

line conductor;
e = effective value of the voltage between the line conductor

and neutral in kilovolts;
1

/ = frequency;
c = 25;

and a is given by the equation :

A rr
a = T\/-5 \ s

where :

r = radius of conductor in centimeters;

s = distance between conductor and return conductor in

centimeters;
6 = density of the air, referred to 25C. and 76 cm. barometer;

A = 241;

and:

e = effective disruptive critical voltage to neutral, given in

kilovolts by the equation (natural logarithm)

o

CQ = m g Q 5r log
-

where :

0o
= 21.1 kv. per centimeter effective = breakdown gradient

of air;

Wo = surface constant of the conductor.

It is:

mo = 1 for perfectly smooth polished wire;

Wo = 0.98 to 0.93 for roughened or weathered wire;

1 = }4 the voltage between the conductors in a single-phase circuit,1/V3
times the voltage between the conductors in a three-phase circuit.
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decreasing to:

wo = 0.87 to 0.83 for7-strand cable (r being the outer radius of

the cable).
1

Materially higher losses occur in snow storms and rain.

For further discussion of the dielectric field and the power
losses in it, see F. W. Peek's "Dielectric Phenomena in High-

voltage Engineering."

1 "Dielectric Phenomena in High-voltage Engineering," by F. W. Peek,

Jr., page 200.



CHAPTER XV

DISTRIBUTED CAPACITY, INDUCTANCE, RESISTANCE,
AND LEAKAGE

127. In the foregoing, the phenomena causing loss of energy
in an alternating-current circuit have been discussed; and it has

been shown that the mutual relation between current and e.m.f.

can be expressed by two of the four constants:

power component of e.m.f., in phase with current, and = current

X effective resistance, or r;

reactive component of e.m.f., in quadrature with current, and =

current X effective reactance, or x;

power component of current, in phase with e.m.f., and = e.m.f.

X effective conductance, or 0;

reactive component of current, in quadrature with e.m.f., and =
e.m.f. X effective susceptance, or b.

In many cases the exact calculation of the quantities, r, x, g, 6,

is not possible in the present state of the art.

In general, r, x, g, 6, are not constants of the circuit, but depend
besides upon the frequency more or less upon e.m.f., current,

etc. Thus, in each particular case it becomes necessary to dis-

cuss the variation of r, x, g, 6, or to determine whether, and

through what range, they can be assumed as constant.

In what follows, the quantities r, x, g, 6, will always be consid-

ered as the coefficients of the power and reactive components of

current and e.m.f. that is, as the effective quantities so that

the results are directly applicable to the general electric circuit

containing iron and dielectric losses.

Introducing now, in Chapters VIII, to XI, instead of "ohmic

resistance," the term "effective resistance," etc., as discussed

in the preceding chapter, the results apply also within the range

discussed in the preceding chapter to circuits containing iron

and other materials producing energy losses outside of the electric

conductor.

128. As far as capacity has been considered in the foregoing

chapters, the assumption has been made that the condenser or

168
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other source of negative reactance is shunted across the circuit at

a definite point. In many cases, however, the condensive react-

ance is distributed over the whole length of the conductor, so

that the circuit can be considered as shunted by an infinite num-
ber of infinitely small condensers infinitely near together, as

diagrammatically shown in Fig. 100.

iiiiiiiiiiiiii 11 iiiii
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FIG. 100.

In this case the intensity as well as phase of the current, and

consequently of the counter e.m.f. of inductive reactance and

resistance, vary from point to point; and it is no longer possible

to treat the circuit in the usual manner by the vector diagram.
This phenomenon is especially noticeable in long-distance lines,

in underground cables, and to a certain degree in the high-poten-
tial coils of alternating-current transformers for very high vol-

tage and also in high frequency circuits. It has the effect that not

only the e.m.fs., but also the currents, at the beginning, end, and

different points of the conductor, are different in intensity and in

phase.

Where the capacity effect of the line is small, it may with

sufficient approximation be represented by one condenser of the

same capacity as the line, shunted across the line at its middle.

Frequently it makes no difference either, whether this condenser is

considered as connected across the line at the generator end, or

at the receiver end, or at the middle.

A better approximation is to consider the line as shunted at

the generator and at the motor end, by two condensers of one-

sixth the line capacity each, and in the middle by a condenser

of two-thirds the line capacity. This approximation, based on

Simpson's rule, assumes the variation of the electric quantities

in the line as parabolic. If, however, the capacity of the line is

considerable, and the condenser current is of the same magnitude
as the main current, such an approximation is not permissible,

but each line element has to be considered as an infinitely small

condenser, and the differential equations based thereon integrated.

Or the phenomena occurring in the circuit can be investigated

graphically by the method given in Chapter VI, 39, by dividing

the circuit into a sufficiently large number of sections or line
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elements, and then passing from line element to line element, to

construct the topographic circuit characteristics.

129. It is thus desirable to first investigate the limits of appli-

cability of the approximate representation of the line by one or

by three condensers.

Assuming, for instance, that the line conductors are of 1 cm.

diameter, and at a distance from each other of 50 cm., and that

the length of transmission is 50 km., we get the capacity of the

transmission line from the formula

C = 1.11 X 10~ 6 kl -T- 4 log, 2^ microfarads,

where

k = dielectric constant of the surrounding medium = 1 in air;

I = length of conductor = 5 X 10 6
cm.;

d = distance of conductors from each other = 50 cm.;
d = diameter of conductor = 1 cm.

Hence C = 0.3 microfarad,

the condensive reactance is x = ^ 77? ohms,Z 7T/O

where/ = frequency; hence at/ = 60 cycles,

x = 8,900 ohms;

and the charging current of the line, at E = 20,000 volts, be-

comes,
E

IQ
= = 2.25 amp.x

The resistance of 100 km. of wire of 1 cm. diameter is 22 ohms;

therefore, at 10 per cent. = 2,000 volts loss in the line, the main

current transmitted over the line is

7
2

> 01/ = -w = 91 amp.

representing about 1,800 kw.

In this case, the condenser current thus amounts to less than

2.5 per cent., and hence can still be represented by the approxi-

mation of one condenser shunted across the line.

If the length of transmission is 150 km., and the voltage,

30,000,

condensive reactance at 60 cycles, x =' 2,970 ohms;

charging current, IQ
= 10.1 amp.;

line resistance, r = 66 ohms;
main current at 10 per cent, loss, / = 45.5 amp.
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The condenser current is thus about 22 per cent, of the main

current, and the approximate calculation of the effect of line

capacity still fairly accurate.

At 300 km. length of transmission it will, at 10 per cent,

loss and with the same size of conductor, rise to nearly 90 per
cent, of the main current, thus making a more explicit investiga-

tion of the phenomena in the line necessary.

In many cases of practical engineering, however, the capacity

effect is small enough to be represented by the approximation
of one; or, three condensers shunted across the line.

130. (A) Line capacity represented by one condenser shunted

across middle of line.

Let

Y = g jb = admittance of receiving circuit;

Z = r + jx = impedance of line
;

bc = condenser susceptance of line.

li
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or, expanding,

/. =
E[ {g

+
b

^(rb
-

xg)]
-

j [(b
-

6.)
-

^(rg + xb)] }

1 + (r + jx) (g-jb) + J-
(r+jx)

= B
{

1 + (r + jx)
(g
-

jb + ]

^) + ^(r+jxY (g -JK) \ -

131. Distributed condensive reactance, inductive reactance, leak-

age, and resistance.

In some cases, especially in very long circuits, as in lines

conveying alternating-power currents at high potential over

extremely long distances by overhead conductors or under-

ground cables, or with very feeble currents at extremely high

frequency, such as telephone currents, the consideration of the

line resistance which consumes e.m.fs. in phase with the current

and of the line reactance which consumes e.m.fs. in quadrature
with the current is not sufficient for the explanation of the

phenomena taking place in the line, but several other factors

have to be taken into account.

In long lines, especially at high potentials, the electrostatic

capacity of the line is sufficient to consume noticeable currents.

The charging current of the line condenser is proportional to the

difference of potential, and is one-fourth period ahead of the

e.m.f. Hence, it will either increase or decrease the main

current, according to the relative phase of the main current and
the e.m.f.

As a consequence, the current changes in intensity as well

as in phase, in the line from point to point; and the e.m.f. con-

sumed by the resistance and inductive reactance therefore also

changes in phase and intensity from point to point, being

dependent upon the current.

Since no insulator has an infinite resistance, and as at high

potentials not only leakage, but even direct escape of electricity

into the air, takes place by corona, we have to recognize the

existence of a current approximately proportional and in phase
with the e.m.f. of the line. This current represents consumption
of power, and is, therefore, analogous to the e.m.f. consumed

by resistance, while the condenser current and the e.m.f. of self-

induction are wattless or reactive.
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Furthermore, the alternating current in the line produces in all

neighboring conductors secondary currents, which react upon
the primary current, and thereby introduce e.m.fs. of mutual

inductance into the primary circuit. Mutual inductance is

neither in phase nor in quadrature with the current, and can

therefore be resolved into a power component of mutual induct-

ance in phase with the current, which acts as an increase of

resistance, and into a reactive component in quadrature with the

current, which decreases the self-inductance.

This mutual inductance is not always negligible, as, for in-

stance, its disturbing influence in telephone circuits shows.

The alternating voltage of the line induces, by electrostatic

influence, electric charges in neighboring conductors outside of

the circuit, which retain corresponding opposite charges on the

line wires. This electrostatic influence requires a current pro-

portional to the e.m.f. and consisting of a power component, in

phase with the e.m.f., and a reactive component, in quadrature
thereto.

The alternating electromagnetic field of force set up by the

line current produces in some materials a loss of energy by
magnetic hysteresis, or an expenditure of e.m.f. in phase with

the current, which acts as an increase of resistance. This

electromagnetic hysteretic loss may take place in the con-

ductor proper if iron wires are used, and will then be very serious

at high frequencies, such as those of telephone currents.

The effect of eddy currents has already been referred to under

"mutual inductive reactance," of which it is a power component.
The alternating electrostatic field of force expends energy in

dielectrics by corona and dielectric hysteresis. In concentric

cables, where the electrostatic gradient in the dielectric is com-

paratively large, the dielectric losses may at high potentials

consume appreciable amounts of energy. The dielectric loss

appears in the circuit as consumption of a current, whose com-

ponent in phase with the e m.f. is the dielectric power current,

which may be considered as the power component of the capacity
current.

Besides this, there is the increase of ohmic resistance due to

unequal distribution of current, which, however, is usually not

large enough to be noticeable.

Furthermore, the electric field of the conductor progresses

with a finite velocity, the velocity of light, hence lags behind
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the flow of power in the conductor, and so also introduces

power components, depending on current as well as on potential

difference.

132. This gives, as the most general case, and per unit length

of line :

e.m.fs. consumed in phase with the current, I, and =
rl, repre-

senting consumption of power, and due to:

Resistance, and its increase by unequal current distri-

bution; to the power component of mutual inductive

reactance or to induced currents; to the power component
of self-inductive reactance or to electromagnetic hysteresis,

and to radiation.

e.m.fs. consumed in quadrature with the current, I, and =
xl,

wattless, and due to:

Self-inductance, and mutual inductance.

Currents consumed in phase with the e.m.f., E, and = g E,

representing consumption of power, and due to:

Leakage through the insulating material, including silent

discharge and corona; power component of electrostatic

influence; power component of capacity or dielectric

hysteresis, and to radiation.

Currents consumed in quadrature to the e.m.f., E, and = bE,

being wattless, and due to:

Capacity and electrostatic influence.

Hence we get four constants:

Effective resistance, r,

Effective reactance, z,

Effective conductance, g,

Effective susceptance, b,

per unit length of line, which represents the coefficients, per unit

lenght of line, of

e.m.f. consumed in phase with current;

e.m.f. consumed in quadrature with current;

current consumed in phase with e.m.f.;

current consumed in quadrature with e.m.f.;

or,

Z = r + jx,

Y = g+jb,
and, absolute,

z =

y =
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The complete investigation of a circuit or line contain-

ing distributed capacity, inductive reactance, resistance, etc.,

leads to functions which are products of exponential and of

trigonometric functions. That is, the current and potential

difference along the line, Z, are given by expressions of the form :

e+al(A cos # + B sin 01).

Such functions of the distance, I, or position on the line,

while alternating in time, differ from the true alternating waves

in that the intensities of successive half-waves progressively

increase or decrease with the distance. Such functions are called

oscillating waves, and, as such, are beyond the scope of this

book, but are more fully treated in
"
Theory and Calculation

of Transient Electric Phenomena an,d Oscillations/' Section III.

There also will be found the discussion of the phenomena of

distributed capacity in high-potential transformer windings, the

effect of the finite velocity of propagation of the electric field, etc.

For most purposes, however, in calculating long-distance

transmission lines and other circuits of distributed constants,

the following approximate solutions of the general differential

equation of the circuit offers sufficient exactness.

133. The impedance of an element, dl, of the line is:

Zdl

and the voltage, dE, consumed by the current, /, in this line ele-

ment dl:
dE = Zldl

The admittance of the line element, dl, is:

Ydl

hence the current, dl, consumed by the voltage, dE, of this line

element <fi:

'

a - YEdl

This gives the two equations of the transmission line:

Differentiating the first equation, and substituting therein the

second, gives:
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and from the first equation follows:

/ =
7^ ~TT (2)
j Oil

Equation (1) is integrated by:

E = Aem (3)

and, substituting (3) in (1), gives:

B 2 = ZY
hence:

B = + VZY and - \fZY

There exist thus two values of B, which make (3) a solution of

(1), and the most general solution, therefore, is:

E = A i e +A 2 e (4)

Substituting (4) in (2) gives:

+VzTi -VzYi]
Af. A f^

i e - /1 2 c V/

where I is counted from some point of the line as starting point,

for instance, from the step-down end as I = 0.

If then:

EQ = voltage at step-down end of the line,

7 = current at step-down end,

it is, for: I = 0;

EQ = Ai + A 2

hence:

(6)

and, substituting (6) into (5):

7 - T/-/

+ VZYI - V^YI r& +
+ 6

-L.
Z

T~ "

* A ' 2
C7)

-Vz'ri r= +VZYI -VZYI
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Substituting in (7) for the exponential function the infinite

series :

l

gives:

(8)

134. If then: / = 1 is the total length of line, and

ZQ = loZ = total line impedance,
Y = 1 Y = total line admittance,

the equations of voltage EI and current /i at the end 1Q of

the line are given by substituting I = 1Q into equations (8), as:

(9)

2

Since Z is the line impedance, and thus Z I the impedance

voltage,
~

is the impedance voltage, as fraction of the total

voltage. Since F is the line admittance, Y E is the charging

V 7?

current, and
j

the charging current as fraction of the total

current. The product of these two fractions is:

v
, \/

E A
/

Z F thus is the product of impedance voltage and charging
current of the line, expressed as fraction of total voltage and total

current, respectively, hence is a small quantity, and its higher

powers can therefore almost always be neglected even in very

long transmission lines, and the equation (9) approximated to:

ZoFo , Zo

6

F , do)
-f-

~~2 |

~^~ ^o^o
|

1 4~
'

^ f

12
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These equations are simpler than those often given by repre-

senting the line capacity by a condenser shunted across the middle

of the line, and are far more exact. They give the generator

voltage and current, EI repectively /i, by the step-down voltage

and current, EQ and IQ respectively.

Inversely, if EQ and 7 are chosen as the values at the generator

end, the values at the step-down end are given by substituting

Z = IQ in equations (8), as:

. v I i _.
ZVY

<>\
\ SQ }

1 -j
--~ - iT

1 a

1 _1_
(] V J? 1I H-- - JL 0^0 i 1

(11)

2 j r u
i 6

Neglecting the line conductance : go
=

'0, gives :

and: ZQ =
7*0 -f- JXQ

hence, substituted in equations (10) and (11), and expanded, gives

oZ JVol

hr }

. , ^ , (12)
. Oofo I

where the upper sign holds, if E
0)

IQ are at the step-down end,

EI, Ii at the generator end of the line, and the lower sign holds,

if EO, IQ are at the generator end, EI, I\ at the step-down end of

the line.

As seen, the equations (12) are just as simple as those of a

circuit containing the resistance, inductance and capacity lo-

calized, and are amply exact for practically all cases. Where a

still closer approximation should be required, the next term of

equations (8) and (9) may be included.
7 V

In many cases, the ^ term in (10) and (11) may also be

dropped, giving the still simpler equation:

/-|0\
V \

^ '

T 1 _L_ 1 -J- V 77= IQ 1 H--:r
} YQJQ



CHAPTER XVI

POWER, AND DOUBLE-FREQUENCY QUANTITIES IN
GENERAL

135. Graphically, alternating currents and voltages are repre-

sented by vectors, of which the length represents the intensity,

the direction the phase of the alternating wave. The vectors

generally issue from the center of coordinates.

In the topographical method, however, which is more con-

venient for complex networks, as interlinked polyphase circuits,

the alternating wave is represented by the straight line between

two points, these points representing the absolute values of

potential (with regard to any reference point chosen as coordi-

nate center), and their connection the difference of potential in

phase and intensity.

Algebraically these vectors are represented by complex quan-
tities. The impedance, admittance, etc., of the circuit is a com-

plex quantity also, in symbolic denotation.

Thus current, voltage, impedance, and admittance are related

by multiplication and division of complex quantities in the same

way as current, voltage, resistance, and conductance are related

by Ohm's law in direct-current circuits.

In direct-current circuits, power is the product of current into

voltage. In alternating-current circuits, if

E = e*+je",

I = {i + ^11,

the product,

P = El

is not the power; that is, multiplication and division, which are

correct in the inter-relation of current, voltage, impedance, do

not give a correct result in the inter-relation of voltage, current,

power. The reason is, that E and I are vectors of the same fre-

quency, and Z a constant numerical factor or
"
operator," which

thus does not change the frequency.
179
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The power, P, however, is of double frequency compared with

E and /, that is, makes a complete wave for every half wave of

E or 7, and thus cannot be represented by a vector in the same

diagram with E and I.

PQ
= El is a, quantity of the same frequency with E and /, and

thus cannot represent the power.

136. Since the power is a quantity of double frequency of E
and 7, and thus a phase angle, 6, in E and 7 corresponds to a

phase angle, 2 6, in the power, it is of interest to investigate the

product, El, formed by doubling the phase angle.

Algebraically it is,

p = El =
(e

l + je
n
)(i

l + ji
n

)

Since j
2 = -

1, that is, 180 rotation for E and 7, for the double-

frequency vector, P, f = +1, or 360 rotation, and

j X 1 =
j,

1 X j = -
j.

That is, multiplication with j reverses the sign, since it denotes

a rotation by 180 for the power, corresponding to a rotation of

90 for E and 7.

Hence, substituting these values, we have

p = [El] =
(e

l
i

l + e
ll
i
n

) + j(e
ll
i

l - e l
i
11
).

The symbol [El] here denotes the transfer from the frequency

of E and 7 to the double frequency of P.

The product, P = [El], consists of two components: the real

component,
pi = [El]

1 =
(gH'i + 6"t);

and the imaginary component,

JP* = j[EI\i = JO 11
*

1 - e l
i").

The component,
P 1 = [El]

1 = (eW + eni
n

),

is the true or "effective" power of the circuit, = El cos (#7).

The component,

pi = [EI]i = (e
ll
i

l - eH'
11

),

is what may be called the "reactive power," or the wattless or

quadrature volt-amperes of the circuit,
= El sin (El).
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The real component will be distinguished by the index 1; the

imaginary or reactive component by the index, j.

By introducing this symbolism, the power of an alternating

circuit can be represented in the same way as in the direct-cur-

rent circuit, as the symbolic product of current and voltage.

Just as the symbolic expression of current and voltage as com-

plex quantity does not only give the mere intensity, but also the

phase,
E = e l +e 11

T- /
2 2

E =
-^i + e ii

gll
tan =

f ,

so the double-frequency vector product P = [E7] denotes more

than the mere power, by giving with its two components, P 1 =

[El]
1 and P y = [El]

1
',
the true power volt-ampere, or ''effective

power," and the wattless volt-amperes, or "reactive power."
If

E = e 1 + je
n

,

/ = ;i + #",
then

e 1
-f- e

LL
>

r~*
^

and

pi = [^/]
i =

(gH-i + eui
n
),

py = [i7]/ = (e^i
1 - e lin),

or

where Pa
= total volt-amperes of circuit. That is,

The effective power, P 1

,
and the reactive power, Pj

,
are the two

rectangular components of the total apparent power, Pa , of the

circuit.

Consequently,
In symbolic representation as double-frequency vector products,

powers can be combined and resolved by the parallelogram of

vectors just as currents and voltages in graphical or symbolic

representation.
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The graphical methods of treatment of alternating-current

phenomena are here extended to include double-frequency

quantities, as power, torque, etc.

P 1

p =
p-

= cos = power-factor.
* a

pi
q p- = sin = induction factor

#

of the circuit, and the general expression of power is

P = Pa (p + jg)
= Pa (cos + j sin 0).

137. The introduction of the double-frequency vector product,

P =
[El], brings us outside of the limits of algebra, however,

and the commutative principle of algebra, a X b = b X a,

does not apply any more, but we have

[El] unlike [IE]

since

[El] = [EIY+j[EIV

[IE] = [IEV + j[IEV

we have

[El]
1 = [IE]

1

that is, the imaginary component reverses its sign by the inter-

change of factors.

The physical meaning is, that if the reactive power, [El]
1

',

is lagging with regard to E, it is leading with regard to /.

The reactive component of power is absent, or the total

apparent power is effective power, if

[El]*'
=

(e
ll

i
l - e l

in)
=

0;

that is,

e^_ i^
e

l

:=

i
l

or,

tan (E) = tan (/>;

that is, E and / are in phase or in opposition.

The effective power is absent, or the total apparent power

reactive, if

[El]
1 =

(e
l
i

l + e lHn)
= 0;
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that is, e^_ _ V_
e

1
"

i
n

or,

tan E = cot /;

that is, E and / are in quadrature.

The reactive component of power is lagging (with regard to

E or leading with regard to /) if

0,

and leading if

[EIV< 0.

The effective power is negative, that is, power returns, if

[EI]
l< 0.

We have,

IE,-I] = [-E,i} = -[Ei]

I- E,
-

i]
= + [Ei]

'

that is, when representing the power of a circuit or a part of a

circuit, current and voltage must be considered in their proper
relative phases, but their phase relation with the remaining

part of the circuit is immaterial.

We have further,

[E, in = -
j [E, I]

= [E, IV - j [E, IV

[JE,JI] = [E } I]

138. Expressing voltage and current in polar coordinates;

E = e l+ je
11 = e (cos a + j sin a)

I = p -j- ji" = i (cos |8 + j sin 0)

gives the vector power:

P =
ei{ (cos a cos + j

2 sin a sin 0) -f- (j sin a cos /? + cos aj sin

and since, by the change to double frequency:

+ j
2 = + 1

+ aj = -
ja

it is:

P = ei
{ (cos a cos + sin a sin 0) + jXsin a sin cos a cos

P = ei {cos (
-

0) + j sin (a
-

0)}



184 ALTERNATING-CURRENT PHENOMENA

and:

the effective power:
P 1 = ei cos (a /3)

the reactive power:
P> = ei sin (a 0)

We thus must note the distinction:

E = ZI =
(r + jx) (i

1 + ji
11

)
= zi (cos 7 + j sin 7) (cos + j sin )

= (n
1 '- xi 11

) + j (n
11 + xi l

)
= w {cos (7 + 0) + j sin (7 + 0) }

and:

P = [,/] = [,/P+j[,/]'
=

[(e
1 + je

11
), C*

1 + ft
11

}}
= ei [(cos a + j sin a), (cos +j sin /5)]

=
(e

1
*

1 + e 11
*
11

) + j (e
lli l - e l

i
11

)
= cz {cos (-) +

j sin (a
-

j8) J

139. If P! =
[J^i/J,

P2
=

[-2/2] . . . Pn = [Enln]

are the symbolic expressions of the power of the different parts

of a circuit or network of circuits, the total power of the whole

circuit or network of circuits is

P = Pi + P2 +....+ Pn ,

pi =X+P 12+ .... +Pn 1

,

Pi = P2
y

_f- p8
y

. . . . + pn/.

In other words, the total power in symbolic expression (effect-

ive as well as reactive) of a circuit or system is the sum of the

powers of its individual components in symbolic expression.

The first equation is obviously directly a result from the law

of conservation of energy.

One result derived herefrom is, for instance:

If in a generator supplying power to a system the current is

out of phase with the e.m.f. so as to give the reactive power

P*, the current can be brought into phase with the generator
e.m.f. or the load on the generator made non-inductive by in-

serting anywhere in the circuit an apparatus producing the react-

ive power P1
;
that is, compensation for wattless currents in a

system takes place regardless of the location of the compensating
device.

Obviously, wattless currents exist between the compensating
device and the source of wattless currents to be compensated

for, and for this reason it may be advisable to bring the com-

pensator as near as possible to the circuit to be compensated.
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140. Like power, torque in alternating apparatus is a double-

frequency vector product also, of magnetism and m.m.f. or

current, and thus can be treated in the same way.
In an induction motor, for instance, the torque is the product

of the magnetic flux in one direction into the component of

secondary current in phase with the magnetic flux in time, but

in quadrature position therewith in space, times the number of

turns of this current, or since the generated e.m.f. is in quad-
rature and proportional to the magnetic flux and the number
of turns, the torque of the induction motor is the product of

the generated e.m.f. into the component of secondary current

in quadrature therewith in time and space, or the product of

the secondary current into the component of generated e.m.f.

in quadrature therewith in time and space.

Thus, if

E l = e l + je
11 = generated e.m.f. in one direction in space,

1 2
= i

l + ji
n = secondary current in the quadrature direction

in space,

the torque is D =

By this equation the torque is given in watts, the meaning

being that D =
[EI]> is the power which would be exerted by

the torque at synchronous speed, or the torque in synchronous
watts.

The torque proper is then

vy fl *T*A

p = number of pairs of poles of the motor.

/ = frequency.

In the polyphase induction motor, if 72
= i

l + ji
n

is the

secondary current in quadrature position, in space, to e.m.f. E\,

the current in the same direction in space as E\ is 7i = jlz

i
u

-f- ji
1 - thus the torque can also be expressed as

D = [EJi]
1 = e ll

i
l - cH' 11

.

It is interesting to note that the expression of torque,

D = [Eiy,

and the expression of power,
P = (EIV,
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are the same in character, but the former is the imaginary, the

latter the real component. Mathematically, torque, in syn-
chronous watts, can so be considered as imaginary power, and

inversely. Physically,
"
imaginary" means quadrature compo-

nent; torque is defined as force times leverage, that is, force

times length in quadrature position with force; while energy is

defined as force times length in the direction of the force. Ex-

pressing quadrature position by "imaginary," thus gives torque
of the dimension of imaginary energy; and "synchronous watts,"

which is torque times frequency, or torque divided by time, thus

becomes of the dimension of imaginary power. Thus, in its

complex imaginary form, the vector product of force and length

contains two quadrature components, of which the one is energy,

the other is torque:

P =
(f,l]

= [f,lV+Af,l}>
and

[/, I}
1 = energy

[/, I]*
= torque.



SECTION IV

INDUCTION APPARATUS

CHAPTER XVII

THE ALTERNATING-CURRENT TRANSFORMER

141. The simplest alternating-current apparatus is the trans-

former. It consists of a magnetic circuit interlinked with two

electric circuits, a primary and a secondary. The primary circuit

is excited by an impressed e.m.f., while in the secondary circuit

an e.m.f. is generated. Thus, in the primary circuit power is

consumed, and in the secondary a corresponding amount of

power is produced.
Since the same magnetic circuit is interlinked with both

electric circuits, the e.m.f. generated per turn must be the same

in the secondary as in the primary circuit; hence, the primary

generated e.m.f. being approximately equal to the impressed

e.m.f., the e.m.fs. at primary and at secondary terminals have

approximately the ratio of their respective turns. Since the

power produced in the secondary is approximately the same

as that consumed in the primary, the primary and secondary
currents are approximately in inverse ratio to the turns.

142. Besides the magnetic flux interlinked with both electric

circuits which flux, in a closed magnetic circuit transformer,

has a circuit of low reluctance a magnetic cross-flux passes

between the primary and secondary coils, surrounding one coil

only, without being interlinked with the other. This magnetic
cross-flux is proportional to the current in the electric circuit,

or rather, the ampere-turns or m.m.f., and so increases with the

increasing load on the transformer, and constitutes what is

called the self-inductive or leakage reactance of the trans-

former; while the flux surrounding both coils may be con-

sidered as mutual inductive reactance. This cross-flux of

self-induction does not generate e.m.f. in the secondary circuit,

187
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and is thus, in general, objectionable, by causing a drop of

voltage and a decrease of output. It is this cross-flux, how-

ever, or flux of self-inductive reactance, which is utilized in

special transformers, to secure automatic regulation, for con-

stant power, or for constant current, and in this case is exagger-

ated by separating primary and secondary coils. In the con-

stant potential transformer, however, the primary and secondary
coils are brought as near together as possible, or even inter-

spersed, to reduce the cross-flux.

There is, however, a limit, to which it is safe to reduce the

cross-flux, as at short-circuit at the secondary terminals, it is the

e.m.f. of self-induction of this cross-flux which limits the current,

and with very low self-induction, these currents may become

destructive by their mechanical forces. Therefore experience

shows that in large power transformers it is not safe to go below

4 to 6 per cent, cross-flux.

As will be seen, by the self-inductive reactance of a circuit, not

the total flux produced by, and interlinked with, the circuit is

understood, but only that (usually small) part of the flux which

surrounds one circuit without interlinking with the other circuit.

143. The alternating magnetic flux of the magnetic circuit

surrounding both electric circuits is produced by the combined

magnetizing action of the primary and of the secondary current.

This magnetic flux is determined by the e.m.f. of the trans-

former, by the number of turns, and by the frequency.

If

$ = maximum magnetic flux,

/ = frequency,
n = number of turns of the coil,

the e.m.f. generated in this coil is

E = V2Vn$ 10~ 8 = 4.44 fn& lO" 8
volts;

hence, if the e.m.f., frequency, and number of turns are de-

termined, the maximum magnetic flux is

ff 108

"

V2*/n"

To produce the magnetism, <f>, of the transformer, a m.m.f.

of F ampere-turns is required, which is determined by the shape

and the magnetic characteristic of the iron, in the manner dis-

cussed in Chapter XII.
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144. Consider as instance, a closed magnetic circuit transformer.

<j>

The maximum magnetic induction is B =
-j, where A = the

cross-section of magnetic circuit.

To induce a magnetic density, J5, a magnetizing force of /

ampere-turns maximum is required, or = ampere-turns effect-

ive, per unit length of the magnetic circuit; hence, for the total

magnetic circuit, of length, I,

v

or

-7- ampere-turns;
v 2

F If
I = - =

y= amp. eff.
n n-v/2

where n = number of turns.

At no-load, or open secondary circuit, this m.m.f., F, is fur-

nished by the exciting current, 7 o, improperly called the leakage

current
,
of the transformer; that is, that small amount of primary

current which passes through the transformer at open secondary
circuit.

In a transformer with open magnetic circuit, such as the

"hedgehog" transformer, the m.m.f., F, is the sum of the m.m.f.

consumed in the iron and in the air part of the magnetic circuit

(see Chapter XII).
The power component of the exciting current represents the

power consumed by hysteresis and eddy currents and the small

ohmic loss.

The exciting current is not a sine wave, but is, at least in

the closed magnetic circuit transformer, greatly distorted by
hysteresis, though less so in the open magnetic circuit trans-

former. It can, however, be represented by an equivalent sine

wave, 7oo, of equal intensity and equal power with the distorted

wave, and a wattless higher harmonic, mainly of triple frequency.

Since the higher harmonic 'is small compared with the total

exciting current, and the exciting current is only a small part
of the total primary current, the higher harmonic can, for most

practical cases, be neglected, and the exciting current repre-

sented by the equivalent sine wave.

This equivalent sine wave, 7 o, leads the wave of magnetism,

<$>, by an angle, a, the angle of hysteretic advance of phase, and
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consists of two components the hysteretic power current

in quadrature with the magnetic flux, and therefore in phase
with the generated e.m.f. = 700 sin a] and the magnetizing

current, in phase with the magnetic flux, and therefore in quad-
rature with the generated e.m.f., and so wattless, = 7 o cos a.

The exciting current, 7 o, is determined from the shape and

magnetic characteristic of the iron, and the number of turns;

the hysteretic power current is

power consumed in the iron
/on Sin a =

;

generated e.m.f.

145. Graphically, the polar diagram of m.m.fs., of a trans-

former is constructed thus :

Let, in Fig. 102, 0$ = the magnetic flux in intensity and

phase (for convenience, as intensities, the effective values are

FIG. 102.

used throughout), assuming its phase as the downwards vertical;

that is, counting the time from the moment where the rising

magnetism passes its zero value.

Then the resultant m.m.f. is represented by the vector, OF,

leading 0$ by the angle, FO& = a.

The generated e.m.fs. have the phase 180, that is, are plotted

toward the left, and represented by the vectors, OE'Q and OE\.

If, now, 0' = angle of lag in the secondary circuit, due to the

total (internal and external) secondary reactance, the secondary

current, 7i, and hence the secondary m.m.f., F\ = tti 7i lag

behind E'i by an angle 0', and have the phase, 180 + 0', repre-
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sented by the vector OF lf Constructing a parallelogram of

m.m.fs., with OF as the diagonal and OFi as one side, the other

side or OF is the primary m.m.f., in intensity and phase, and

hence, dividing by the number of primary turns, n
>
the primary

...
f

^o
current is io =

ft4

To complete the diagram of e.m.fs., we have now,
In the primary circuit:

e.m.f. consumed by resistance is I r
,
in phase with /

,
and

represented by the vector, OEro ;

e.m.f. consumed by reactance is I OXQ, 90 ahead of 7
,
and

represented by the vector, OEXQ ',

e.m.f. consumed by induced e.m.f. is E', equal and opposite

to E'o, and represented by the vector, OE' .

Hence,jthe total primary impressed e.m.f. 'by combination of

OEro ,
OEXQ} and OE' by means of the parallelogram of e.m.fs. is

EQ
= OE

,

and the difference of phase between the primary impressed
e.m.f. and the primary current is

In the secondary circuit:

Counter e.m.f. of resistance is I\r\ in opposition with /i, and

represented by the vector, OE'
ri ',

Counter e.m.f. of reactance is IiXi, 90 behind /i, and repre-

sented by the vector, OE'X1 .

Generated e.m.fs., E\, represented by the vector, OE'V

Hence, the secondary terminal voltage, by combination of

OE'ri ,
OE'X1 and OE'i by means of the parallelogram of e.m.fs.

is

E, = OEi,

and the difference of phase between the secondary terminal

voltage and the secondary current is

As seen, in the primary circuit the "components of impressed
e.m.f. required to overcome the counter e.m.fs." were used for

convenience, and in the secondary circuit the
"
counter e.m.fs."
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146. In the construction of the transformer diagram, it is

usually preferable not to plot the secondary quantities, current

and e.m.f., direct, but to- reduce them to correspondence with

the primary circuit by multiplying by the ratio of turns, a =
,

for the reason that frequently primary and secondary e.m.fs.,

etc., are of such different magnitude as not to be easily repre-

sented on the same scale; or the primary circuit may be reduced

to the secondary in the same way. In either case, the vectors

representing the two generated e.m.fs. coincide, or OE'i = OE'Q .

FIG. 103.

Figs. 103 to 109 give the polar diagram of a transformer having
the constants, reduced to the secondary circuit:

r = 0.2 ohm, 6 = 0.173 mhos,
x = 0.33 ohm, E\ = 100 volts,

7*1
= 0.167 ohm, /i = 60 amp.,

xi = 0.25 ohm, a = 30.

<7o
= 0.100 mhos,

For the conditions of secondary circuit:

8'i = 80 lag in Fig. 103 6\ = 20 lead in Fig. 107

50 lag
" 104 50 lead

" 108

20 lag
" 105 80 lead

" 109

0, or in phase,
' '

106

As shown, with a change of 0'i the other quantities, E Q , /i,

Jo, etc., change in intensity and direction. The loci described
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Ek.

FIG. 104.

FIG. 105.

13

FIG. 106.
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FIG. 107.

FIG. 108.
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FIG. 111.
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by them are circles, and are shown in Fig. 110, with the point

corresponding to non-inductive load marked. The part of the

locus corresponding to a lagging secondary current is shown
in thick full lines, and the part corresponding to leading current

in thin full lines.

147. This diagram represents the condition of constant

secondary generated e.m.f., E'i, that is, corresponding to a con-

stant maximum magnetic flux.

By changing all the quantities proportionally from the dia-

gram of Fig. 110, the diagrams for the constant primary im-

FIG. 113.

pressed e.m.f. (Fig. Ill), and for constant secondary terminal

voltage (Fig. 112), are derived. In these cases, the locus gives
curves of higher order.

Fig. 113 gives the locus of the various quantities when the

load is changed from full-load, /i = 60 amp. in a non-inductive

secondary external circuit, to no-load or open-circuit:

(a) By increase of secondary current; (6) by increase of

secondary inductive resistance; (c) by increase of secondary
condensive reactance.

As shown in (a), the locus of the secondary terminal voltage,

Ei t and thus of EQ , etc., are straight lines; and in (6) and (c),

parts of one and the same circle; (a) is shown in full lines, (6) in

heavy full lines, and (c) in light full lines. This diagram corre-

sponds to constant maximum magnetic flux; that is, to constant

secondary generated e.m.f. The diagrams representing constant
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primary impressed e.m.f. and constant secondary terminal

voltage can be derived from the above by proportionality.

148. It must be understood, however, that for the purpose
of making the diagrams plainer, by bringing the different values

to somewhat nearer the same magnitude, the constants chosen

for these diagrams represent not the magnitudes found in actual

transformers, but refer to greatly exaggerated internal losses.

In practice, about the following magnitudes would be found:

r = 0.01 ohm; xi = 0.00025 ohm;
X = 0.033 ohm; g Q

= 0.001 mho;
ri = 0.00008 ohm; b = 0.00173 mho;

that is, about one-tenth as large as assumed. Thus the changes
of the values of E

, E\, etc., under the different conditions

will be very much smaller.

Symbolic Method

149. In symbolic representation by complex quantities the

transformer problem appears as follows:

The exciting current, /oo, of the transformer depends upon
the primary e.m.f., which dependence can be represented by an

admittance, the "primary admittance," Fo =
go jb ,

of the

transformer.

The resistance and reactance of the primary and the secondary
circuit are represented in the impedance by

Z Q
= r + jx ,

and Zi = n + jxi.

Within the limited range of variation of the magnetic density
in a constant-potential transformer, admittance and impedance
can usually, and with sufficient exactness, be considered as

constant.

Let

n o
= number of primary turns in series;

HI = number of secondary turns in series;

n Q .

a = = ratio of turns;
Hi

YQ =
0o jbo = primary admittance

Exciting current~
Primary induced e.m.f. '
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ZQ = TO + jxo = primary impedance

_ e.m.f. consumed in primary coil by resistance and reactance .

Primary current

Zi = r\ + jxi = secondary impedance

_ e.m.f. consumed in secondary coil by resistance and reactance
m

Secondary current

where the reactances, XQ and Xi, refer to the true self-induction

only, or to the cross-flux passing between primary and second-

ary coils; that is, interlinked with one coil only.

Let also

Y = g jb = total admittance of secondary circuit, in-

cluding the internal impedance;

EQ = primary impressed e.m.f.
;

E' = e.m.f. consumed by primary counter e.m.f.;

Ei = secondary terminal voltage;

E'i = secondary generated e.m.f.;

IQ = primary current, total;

Ioo
= primary exciting current;

1 1
= secondary current.

Since the primary counter e.m.f., EQ', and the secondary

generated e.m.f., E'i, are proportional by the ratio of turns, a,

E' = + aE\. (1)

E' = - E'.

The secondary current is

Ii= YE' i. (2)

consisting of a power component, gEi, and a reactive component,

Wi,
To this secondary current corresponds the component of

primary current.

:

. .

'

(3). .

a a

The primary exciting current is

/oo = YoE'. (4)
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Hence, the total primary current is

/o =
f'

o + /oo (5)

YE'
= - +

or>

/ = -F+a*Fo (6)

The e.m.f. consumed in the secondary coil by the internal

impedance is Z-J\.

The e.m.f. generated in the secondary coil by the magnetic
flux is E'i.

Therefore, the secondary terminal voltage is

77T 77*' 7 T *

or, substituting (2), we have

77? TTF/ t -t *7 ~\7 \ f7\
Hi i

= EJ i{l Zii } (j)

The e.m.f. consumed in the primary coil by the internal im-

pedance is ZQ/O.

The e.m.f. consumed in the primary coil by the counter e.m.f.

Therefore, the primary impressed e.m.f. is

EQ = E -f- Zo/0>

or, substituting (6),

EQ= E'
, _ .

(8)

+ ZoFo

150. We thus have,

f }

primary e.m.f., EQ
= -aE\

1
1+ Z F + "^~ }

'
(8)

secondary e.m.f., E l
= E\ {1

-
ZrFj, (7)

E'
primary current, I = {F -f a 27 }, (6)
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secondary current, 7i = YEi 1

, (2)

as functions of the secondary generated e.m.f., EI, as parameter.

From the above we derive

Ratio of transformation of e.m.fs.:

Z Y

= a (9)

Ratio of transformations of currents :

From this we get, at constant primary impressed e.m.f.,

EQ constant;

secondary generated e.m.f.,

1

e.m.f. generated per turn,

dE = --
UQ

secondary terminal voltage,

EQ 1 - ZiY

primary current,

1 + Z Fo
ZnF

= UQ

1+Z F Z QY

secondary current,

(ID

At constant secondary terminal voltage,

EI = const.;
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secondary generated e.m.f.,

1 -

e.m.f. generated per turn,

primary impressed e.m.f.,

primary current,

secondary current,

m 1-ZiY'

E Q
= -

1 -

Ei

a 1 -

Y

(12)

151. Some interesting conclusions can be drawn from these

equations.

The apparent impedance of the total transformer is

(13)

+ z,. (14)

Substituting now, ^
= Y', the total secondary admittance,

reduced to the primary circuit by the ratio of turns, it is

^
-YQ + Y'

YQ + 5" is the total admittance of a divided circuit with the

exciting current of admittance, YQ, and the secondary current

of admittance, Y' (reduced to primary), as branches. Thus,

YoY'
= Z/0 (16)
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is the impedance of this divided circuit, and

Z t
= Z' + Z . (17)

That is,

The alternate-current transformer, of primary admittance YQ ,

total secondary admittance Y, and primary impedance Z
,

is

equivalent to, and can be replaced by, a divided circuit with the

branches of admittance Y
,

the exciting current, and admittance
Y

Y' =
-g, the secondary current, fed over mains of the impedance

ZQ ,
the internal primary impedance.

This is shown diagrammatically in Fig. 114.

Generator Transformer

FIG. 114.

152. Separating now the internal secondary impedance from

the external secondary impedance, or the impedance of the

consumer circuit, it is

1

i + Z;

where Z = external secondary impedance,

(18)

Reduced to primary circuit, it is

,
= = a2

Zi + a2Z

That is,

(19)

(20)
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An alternate-current transformer, of primary admittance Y
,

primary impedance ZQ, secondary impedance Z\, and ratio of.

turns a
} can, when the secondary circuit is closed by an impedance,

Z (the impedance of the receiver circuit) ,
be replaced, and is equiva-

lent to a circuit of impedance, Z' = a2
Z, fed over mains of the

impedance, ZQ + Z'i, where Z\ = a 2
Zi, shunted by a circuit of

admittance, YQ, which latter circuit branches off at the points,

a, b, between the impedances, Z Q and Z\.

This is represented diagrammatically in Fig. 115.

Generator i. Transformer I
,

FIG. 116.

It is obvious, therefore, that if the transformer contains sev-

eral independent secondary circuits, they are to be considered as

branched off at the points a, b, in diagram, Fig. 115, as shown in

diagram, Fig. 116.

It therefore follows :

An alternate-current transformer, of s secondary coils, of the
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internal impedances, Z*, Zi
11

,
. . . Z^, closed by external secondary

circuits of the impedances, Z
1
,
Z11

,
. . . Zs

,
is equivalent to a divided

circuit of s + 1 branches, one branch of admittance, Y
,
the excit-

ing current, the other branches of the impedances, Z\ + Z7
,

Zi
1 + Z11

, . . . Zi8 + Z*j the latter impedances being reduced to

the primary circuit by the ratio of turns, and the whole divided

circuit being Jed by the primary impressed e.m.f., EQ, over mains

of the impedance, ZQ.

Consequently, transformation of a circuit merely changes
all the quantities proportionally, introduces in the mains the

impedance, Z Q + Z'i, and a branch circuit between Z Q and Z\,
of admittance F .

Thus, double transformation will be represented by diagram,

Fig. 117.

With this the discussion of the alternate-current transformer

ends, by becoming identical with that of a divided circuit con-

taining resistances and reactances.

Transformer Transformer

Receiving
Circuit

FIG. 117.

Such circuits have been discussed in detail in Chapter IX,
and the results derived there are now directly applicable to the

transformer, giving the variation and the control of secondary

terminal voltage, resonance phenomena, etc.

Thus, for instance, if Z'i = Z Q ,
and the transformer contains

an additional secondary coil, constantly closed by a condensive

reactance of such size that this auxiliary circuit, together with

the exciting circuit, gives the reactance, XQ, with a non-inductive

secondary circuit, Z\ = n, we get the condition of transformation

from constant primary potential to coristant secondary current,

and inversely.
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153. As seen, the alternating-current transformer is charac-

terized by the constants:

Ratio of turns: a =
f*i

Exciting admittance: Y =
g Q jb .

Self-inductive impedances: Z = r + jx .

Zi = ri + jxi.

Since the effect of the secondary impedance is essentially the

same as that of the primary impedance (the only difference

being, that no voltage is consumed by the exciting current in the

secondary impedance, but voltage is consumed in the primary

impedance, though very small in a constant-potential trans-

former), the individual values of the two impedances, Z and Zi,

are of less importance than the resultant or total impedance of the

transformer, that is, the sum of the primary impedance plus
the secondary impedance reduced to the primary circuit :

Z' = Z + a 2
Zi,

and the transformer accordingly is characterized by the two

constants :

Exciting admittance, F =
go j&o.

Total self-inductive impedance, Z' = r
f + jx'.

Especially in constant-potential transformers with closed

magnetic circuit as usually built the combination of both

impedances into one, Z', is permissible as well within the errors

of observation.

Experimentally, the exciting admittance, Fo =
fifo jbo, and

the total self-inductive impedance, Z' = r' + jx' t
are deter-

mined by operating the transformer at its normal frequency:
1. With open secondary circuit, and measuring volts eo,

amperes io, and watts WQ, input excitation test.

2. With the secondary short-circuited, and measuring volts

ei, amperes ii, and watts pi, input. (In this case, usually a far

lower impressed voltage is required impedance test.)

It is then:

= \A/o
2 + fo

r =
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If a separation of the total impedance Z f
into the primary

impedance and the secondary impedance is desired, as a rule the

secondary reactance reduced to the primary can be assumed
as equal to the primary reactance :

except if from the construction of the transformer it can be seen

that one of the circuits has far more reactance than the other,

and then judgment or approximate calculation must guide in

the division of the total reactance between the two circuits.

If the total effective resistance, r', as derived by wattmeter,

equals the sum of the ohmic resistances of primary and of

secondary reduced to the primary:

r' = r + a2
r,

the ohmic resistances, ro and n, as measured by Wheatstone

bridge or by direct current, are used.

If the effective resistance is greater than the resultant of the

ohmic resistances:

r' > r + aVi,

the difference:

r" = r
' -

(r + aVi)

may be divided between the two circuits in proportion to the

ohmic resistances, that is, the effective resistance distributed

between the two circuits in the proportion of their ohmic resist-

ances, so giving the effective resistances of the two circuits,

r'o and r'i, by:

r'o -*- r'i = r 4- n;

or, if from the construction of the transformer as the use of

large solid conductors, it can be seen that the one circuit is

entirely or mainly the seat of the power loss by hysteresis,

eddies, etc., which is represented by the additional effective

resistance, r", this resistance, r", is entirely or mainly assigned to

this circuit.

In general, it therefore may be assumed:

x = -,

Xl = ri =
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Usually, the excitation test is made on the low-voltage coil,

the impedance test on the high-voltage coil, and then reduced

to the same coil as primary. Hereby the currents and voltages

are more nearly of the same magnitude in both tests.

154. In the calculation of the transformer:

The exciting admittance, Fo, is derived by calculating the

total exciting current from the ampere-turns excitation, the mag-
netic characteristic of the iron and the dimensions of the main

magnetic circuit, that is the magnetic circuit interlinked with

primary and secondary coils. The conductance, gro, is derived

from the hysteresis loss in the iron, as given by magnetic density,

hysteresis coefficient and dimensions of magnetic circuit, allow-

ance being made for eddy currents in the iron.

The ohmic resistances, r and n, are found from the dimen-

sions of the electric circuit, and, where required, allowance made
for the additional effective resistance, r".

The reactances, XQ and Xi, are calculated by calculating the

leakage flux, that is the magnetic flux produced by the total

primary respectively secondary ampere-turns, and passing be-

tween primary and secondary coils, and within the primary

respectively secondary coil, in a magnetic circuit consisting

largely of air. In this case, the iron part of the magnetic leakage

circuit can as a rule be neglected.



CHAPTER XVIII

POLYPHASE INDUCTION MOTORS

155. The induction motor consists of a magnetic circuit inter-

linked with two electric circuits or sets of circuits, the primary
and the secondary. It therefore is electromagnetically the same
structure as the transformer. The difference is, that in the

transformer secondary and primary are stationary, and the

electromagnetic induction between the circuits utilized to trans-

mit electric power to the secondary, while in the induction motor
the secondary is movable with regards to the primary, and the

mechanical forces between the primary, and secondary utilized

to produce motion. In the general alternating-current trans-

former or frequency converter we shall find an apparatus trans-

mitting electric as well as mechanical energy, and comprising

both, induction motor and transformer, as the two limiting

cases. In the induction motor, only the mechanical fprce be-

tween primary and secondary is used, but not the transfer of

electrical energy, and thus the secondary circuits are closed upon
themselves. Hence the induction motor consists of a magnetic
circuit interlinked with two electric circuits or sets of circuits,

the primary and the secondary circuit, which are movable with

regard to each other. In general a number of primary and a

number of secondary circuits are used, angularly displaced around

the periphery of the motor, and containing e.m.fs. displaced in

phase by the same angle. This multi-circuit arrangement has

the object always to retain secondary circuits in inductive rela-

tion to primary circuits and vice versa, in spite of their relative

motion.

The result of the relative motion between primary and

secondary is, that the e.m.fs. generated in the secondary or the

motor armature are not of the same frequency as the e.m.fs.

impressed upon the primary, but of a frequency which is the

difference between the impressed frequency and the frequency

of rotation, or equal to the "slip," that is, the difference between

synchronism and speed (in cycles).

208
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Hence, if

/ = frequency of main or primary e.m.f.,

s = slip as fraction of synchronous speed,

sf
= frequency of armature or secondary e.m.f.,

and (1 s) / = frequency of rotation of armature.

In its reaction upon the primary circuit, however, the arma-

ture current is of the same frequency as the primary current,

since it is carried around mechanically, with a frequency equal

to the difference between its own frequency and that of the

primary. Or rather, since the reaction of the secondary on the

primary must be of primary frequency whatever the speed

of rotation the secondary frequency is always such as to

give at the existing speed of rotation a reaction of primary

frequency.
156. Let the primary system consist of p equal circuits,

displaced angularly in space by of a period, that is, of
PQ PO

the width of two poles, and excited by p e.m.fs. displaced in

phase by of a period; that is, in other words, let the field

circuits consist of a symmetrical po-phase system. Analo-

gously, let the armature or secondary circuits consist of a sym-
metrical pi-phase system.

Let

n -= number of primary turns per circuit or phase;

n\ = number of secondary turns per circuit or phase;

Pi

Since the number of secondary circuits and number of turns

of the secondary circuits, in the induction motor as in the

stationary transformer is entirely unessential, it is preferable

to reduce all secondary quantities to the primary system, by the

ratio of transformation, a; thus

if E'i = secondary e.m.f. per circuit,

EI = aE'i = secondary e.m.f. per circuit reduced to primary

system ;

14
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if I' i
= secondary current per circuit,

j/
/i =

-^
= secondary current per circuit reduced to primary

system;
if r'i = secondary resistance per circuit,

TI = a z
br'i = secondary resistance per circuit reduced to pri-

mary system;
if x'i = secondary reactance per circuit,

Xi = a 2
bx'i = secondary reactance per circuit reduced to pri-

mary system;
if z'i = secondary impedance per circuit,

Zi a?bz'i = secondary impedance per circuit reduced to pri-

mary system;

that is, the number qf secondary circuits and of turns per sec-

ondary circuit is assumed the same as in the primary system.

In the following discussion, as secondary quantities, the

values reduced to the primary system shall be exclusively

used, so that, to derive the true secondary values, these quan-
tities have to be reduced backward again by the factor

157. Let

f> = total maximum flux of the magnetic field per motor pole.

We then have
'

.

E = \/2 wnof 3> 10~8 = effective e.m.f . generated by the magnetic
field per primary circuit.

Counting the time from the moment where the rising mag-
netic flux of mutual induction, $ (flux interlinked with both

electric circuits, primary and secondary), passes through zero,

in complex quantities, the magnetic flux is denoted by

$ = j&,

and the primary generated e.m.f.,

E- -e;
where

e = \/2 TrnfQ 10~ 8 may be considered as the "active e.m.f. of the

motor," or "counter e.m.f."

Since the secondary frequency is sf, the secondary induced

e.m.f. (reduced to primary system) is EI = se.
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Let

7 = exciting current, or current through the motor, per primary

circuit, when doing no work (at synchronism),

and

F .= g jb = primary exciting admittance per circuit = *

. 6

We thus have,

ge
= magnetic power current, ge

2 = loss of power by hysteresis

(and eddy currents) per primary coil.

Hence

p ge
2 = total loss of power by hysteresis and eddies, as calculated

accorbing to Chapter XII.

be magnetizing current, and

n Qbe = effective m.m.f. per primary circuit;

hence

~nobe = total effective m.m.f.,
a

and
nr\ -

T^nobe = total maximum m.m.f., as resultant of the m.m.fs.

of the po-phases, combined by the parallelogram of

m.m.fs. 1

If (R = reluctance of magnetic circuit per pole, as discussed

in Chapter XII, it is

V2
Thus, from the hysteretic loss, and the reluctance, the con-

stants, g and b and thus the admittance, F, are derived.

Let r = resistance per primary circuit;

XQ = reactance per primary circuit;

thus,

Z = r + JXQ = impedance per primary circuit
;

7*1
= resistance per secondary circuit reduced to primary

system;

Xi = reactance per secondary circuit reduced to primary

system, at full frequency /;

1 Complete discussion hereof, see Chapter XXXIII.
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hence,

sxi = reactance per secondary circuit at slip s,

and

Zi = r\ + jsxi = secondary internal impedance.

168. We now have,

Primary generated e.m.f.,

E = -e.

Secondary generated e.m.f.,

Ei = se.

Hence,

Secondary current,

Component of primary current, corresponding thereto, or

primary load current,

Primary exciting current,

/o= eY = e (g jb); hence,

Total primary current,

7 = /' + Jo

e.m.f. consumed by primary impedance,

E, = Z 7

e.m.f. required to overcome the primary generated e.m.f.,

-E =
e;

hence,

Primary terminal voltage,

Eo = e + E.

We get thus, in an induction motor, at slip s and active e.m.f. e,

Primary terminal voltage,
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Primary current,

or, in complex expression,

Primary terminal voltage,

E = e

Primary current,

7 -| +
r).I 1

To eliminate e, we divide, and get,

Primary current, at slip s, and impressed e.m.f., # ;

r
s i"

or

(flf

-
s (r + J3 ) + (r

Neglecting, in the denominator, the small quantity Z ZiF,

it is

sxi) (g
-

= (s + nflf + sxib) j (rib
- s

(ri + sr ) + js (xi + X Q)

or, expanded,
s
2r ) + n2

g + sri (r g
- x Qb) + s

2X

j[s
2

(

Hence, displacement of phase between current and e.m.f.,

s
2r ) -f r!

2
fif + sr,(r flf

- ^

Neglecting the exciting current, 7o, altogether, that is, setting

Y =
0,

We have

7 _=

(ri + sr ) + js (x 4- x^
'

S (X + Xi)
tan = r
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159. In graphic representation, the induction motor diagram

appears as follows:

Denoting the magnetism by the vertical vector 0$ in Fig. 118,

the m.m.f. in ampere-turns perjcircuit is represented by vector

OF, leading the magnetism, 0$, by the angle of hysteretic

advance a. The e.m.f. generated in the secondary is propor-
tional to the slip s, and represented by OEi at the amplitude of

180. Dividing OE\ by a in the proportion of r\ -* sx\, and

connecting a with the middle, b, of the lower arc of the circle,

OEi, this line intersects the upper arc of the circle at the point,

IiTi. Thus, 0/iri is the e.m.f. consumed by the secondary

resistance, and OI\x\ equal and parallel to E\I\ri is the e.m.f.

consumed by the secondary reactance. The angle, EiOItfi =
61,

is the angle of secondary lag.

FIG. 118.

The secondary m.m.f., OGi, is in the direction of the vector,

OIiTi. Completing the parallelogram of m.m.fs. with OF as

diagonal and OGi, as one side, gives the primary m.m.f., OG,
as other side. The primary current and the e.m.f. consumed

by_the primary resistance, represented by OIrQ ,
is in line with

OG,_the e.m.f. consumed by the primary reactance 90 ahead
of OG, and represented by OIxQ ,

and their resultant, OIz Q ,
is the

e.m.f. consumed by the primary impedance. The e.m.f. gener-
ated in the primary circuit is OE f

,
and the e.m.f. required to

overcome this counter e.m.f. is QE equal and opposite to OE'.

Combining OE with OIzQ gives the primary terminal voltage

represented by vector OE
0) and the angle of primary lag,

EoOG &Q.
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160. Thus far the diagram is essentially the same as the

diagram of the stationary alternating-current transformer. Re-

garding dependence upon the slip of the motor, the locus of

the different quantities for different values of the slip, s, is

determined thus,

FIG. 119.

Let

Assume in opposition to 0$, a point, A, such that

. OA -5- I\r\ = EI -T- IiSXi, then

X #1 Iin X s#'
OA =

IlSXi
E' constant.

That is, Itfi lies on a half-circle with OA E' as diameter.

That means GI lies on a half-circle, g if in Fig. 119 with OC
as diameter. In consequence hereof, GQ lies on half-circle g

with FB equal and parallel to OC as diameter.
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Thus 7r lies on a half-circle with DH as diameter, which

circle is perspective to the circle, FB, and IxQ lies on a half-

circle with IK as diameter, and Iz on a half-circle with LN
as diameter, which circle is derived by the combination of the

circles, 7r and Ix .

The primary terminal voltage, E
,

lies thus on a half-circle,

e
, equal to the half-circle, 7z

,
and having to point E the same

relative position as the half-circle, 7z
,
has to point 0.

This diagram corresponds to constant intensity of the maxi-

mum magnetism, 0$. If the primary impressed voltage, E
,

is kept constant, the circle, e
,
of the primary impressed voltage

changes to an arc with as center, and all the corresponding

points of the other circles have to be reduced in accordance

herewith, thus giving as locus of the other quantities curves of

higher order which most conveniently are constructed point for

point by reduction from the circle of the loci in Fig. 119.

Torque and Power

161. The torque developed per pole by an electric motor
$

equals the product of effective magnetism, /=,
times effective

v 2

F
armature m.m.f., 7=, times the sine of the angle between both,

V2
&F

IX =~ sin (*F).

If tt]
= number of turns, 7i = current, per circuit, with pi

armature circuits, the total maximum current polarization, or

m.m.f. of the armature, is

Hence the torque per pole,

If q = the number of poles of the motor, the total torque of

the motor is,

P.;
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The secondary induced e.m.f., EI, lags 90 behind the inducing

magnetism, hence reaches a maximum displaced in space by
90 from the position of maximum magnetization. Thus, if

the secondary current, 7i, lags behind its emf., EI, by angle,

0i, the space displacement between armature current and field

magnetism is

(/i*) = 90 + 0!,

hence sin ($/i) = cos 0i.

We have, however,

cos 0i = ,

ri =
,vV +W

es 10- 1

+
6 = V2"

thus,

substituting these values in the equation of the torque, it is

qp^sr^ 10 7

jj

or, in practical (c.g.s.) units,

is the torque of the induction motor.

At the slip, s, the frequency, /, and the number of poles, q }

the linear speed at unit radius is

hence the output of the motor,

P = Dv,

or, substituted,

Pirie
28 (1

-
a)

"

. n 2 + S
2
*!

2

is </ie power of the induction motor.

162. We can arrive at the same results in a different way:
By the counter e.m.f., e, of the primary circuit with current

/ = IQ + 1 1 the power is consumed, el = e!Q + eli. The power,

6/0, is that consumed by the primary hysteresis and eddys.
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The power, el\, disappears in the primary circuit by being

transmitted to the secondary system.

Thus the total power impressed upon the secondary system,

per circuit, is

Pi = el,.

Of this power a part, EJi, is consumed in the secondary circuit

by resistance. The remainder,

disappears as electrical power altogether; hence, by the law

of conservation of energy, must reappear as some other form of

energy, in this case as mechanical power, or as the output of

the motor (including friction).

Thus the mechanical output per motor circuit is

P' = /! (e
-

E,).

Substituting,

EI =
se;

'T
-

se
-

J. i
^^

.
- - - -

it is

pt = 6_

2S (1
-

8)

2 | 2 2

hence, since the imaginary part has no meaning as power,

P* = *

and the total power of the motor,

p = pirie
2s (1

-
s)_

At the linear speed,

at unit radius the torque is

In the foregoing, we found

Eo = e 1 1 + s ^ + Z Y
}

( A\ J
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or, approximately,

Eo = e
{

1 + s
|- }

;

or,

g = !

expanded,

6 == Mi Q ~/
j

v i \~ $7*0)

or, eliminating imaginary quantities,

e =

Substituting this value in the equations of torque and of

power, they become,

torque,

power,

Maximum Torque

163. The torque of the induction motor is a maximum for

that value of slip, s, where

or, since

D =

for,
"

! v i i
" u/ i

" v*" i i ^u/ '

_ n
dst ~7~ ~J :=U;

expanded, this gives,

n 2

2 2 _
s 2 '

or,

st
=

Vro2 + (^i + x )
2
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Substituting this in the equation of torque, we get the value of

maximum torque,

A = -

that is, independent of the secondary resistance, TI.

The power corresponding hereto is, by substitution of s t in P,

Pt =
2\/r 2

4-

This power is not the maximum output of the motor, but

is less than the maximum output. The maximum output is

found at a lesser slip, or higher speed, while at the maximum

torque point the output is already on the decrease, due to the

decrease of speed.

With increasing slip, or decreasing speed, the torque of the

induction motor increases; or inversely, with increasing load,

the speed of the motor decreases, and thereby the torque in-

creases, so as to carry the load down to the slip, st , correspond-

ing to the maximum torque. At this point of load and slip

the torque begins to decrease again; that is, as soon as with

increasing load, and thus increasing slip, the motor passes the

maximum torque point, sh it "falls out of step," and comes to a

standstill.

Inversely, the torque of the motor, when starting from rest,

increases with increasing speed, until the maximum torque

point is reached. From there toward synchronism the torque

decreases again.

In consequence hereof, the part of the torque-speed curve

below the maximum torque point is in general unstable, and can

be observed only by loading the motor with an apparatus whose

counter-torque increases with the speed faster than the torque
of the induction motor.

In general, the maximum torque point, st ,
is between syn-

chronism and standstill, rather nearer to synchronism. Only
in motors of very large armature resistance, that is, low efficiency,

st > 1, that is, the maximum torque, occurs below standstill,

and the torque constantly increases from synchronism down
to standstill.

It is evident that the position of the maximum torque point,

st ,
can be varied by varying the resistance of the secondary
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circuit, or the motor armature. Since the slip of the maxi-

mum torque point, st ,
is directly proportional to the armature

resistance, ri, it follows that very constant speed and high

efficiency brings the maximum torque point near synchronism,
and gives small starting torque, while good starting torque
means a maximum torque point at low speed; that is, a motor
with poor speed regulation and low efficiency.

Thus, to combine high efficiency and close speed regulation

with large starting torque, the armature resistance has to be

varied during the operation of the motor, and the motor started

with high armature resistance, and with increasing speed this

armature resistance cut out as far as possible.

164. If

*
=

1,

ri = Vr 2 + Oi+Zo) 2
.

In this case the motor starts with maximum torque, and when
overloaded does not drop out of step, but gradually slows down
more and more, until it comes to rest.

If

St > 1,

then

In this case, the maximum torque point is reached only by
driving the motor backward, as counter-torque.

As seen above, the maximum torque, Dh is entirely inde-

pendent of the armature resistance, and likewise is the current

corresponding thereto, independent of the armature resistance.

Only the speed of the motor depends upon the armature resistance.

Hence the insertion of resistance into the motor armature

does not change the maximum torque, and the current corre-

sponding thereto, but merely lowers the speed at which the

maximum torque is reached.

The effect of resistance inserted into the induction motor is

merely to consume the e.m.f., which otherwise would find its

mechanical equivalent in an increased speed, analogous to

resistance in the armature circuit of a continuous-current shunt

motor.

Further discussion on the effect of armature resistance is

found under "Starting Torque."
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Maximum Power

165. The power of an induction motor is a maximum for that

slip, sp ,
where

dp
fi-

ds >

or, since

(l
-

*)

ds

expanded, this gives

r> _"
(n -f sr r -1- s\Xi -f z r

I <fj. ^ 2 _j_ S2 ('/j. I /^. "^2 i

=
0;

fi

substituted in P, we get the maximum power,

Pt 71

r ) + \Of, + r )
2 + (*i + * )

2
}

This result has a simple physical meaning: (ri + r )
= r is

the total resistance of the motor, primary plus secondary (the

latter reduced to the primary), (xi + XQ) is the total reactance,

and thus V(n + r )
2 + (xi + x )

2 = z is the total impedance
of the motor. Hence

2

p /'i-'O
^P ~i

is the maximum output of the induction motor, at the slip,

The same value has been derived in Chapter X, as the maxi-

mum power which can be transmitted into a non-inductive

receiver circuit over a line of resistance, r, and impedance, z,

or as the maximum output of a generator, or of a stationary

transformer. Hence:

The maximum output of an induction motor is expressed by

the same formula as the maximum output of a generator, or of a

stationary transformer, or the maximum output which can be

transmitted over an inductive line into a non-inductive receiver

circuit.
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The torque corresponding to the maximum output, Pp ,
is

This is not the maximum torque; but the maximum torque,

D t ,
takes place at a lower speed, that is, greater slip,

Vr 2 +
since

ri-fVOi+r )
2 +

that is,

s t > sp .

It is obvious from these equations, that, to reach as large

an output as possible, r and z should be as small as possible;

that is, the resistances, ri + r
,
and the impedances, z, and thus

the reactances, x\ + XQ, should be small. Since ri + r is

usually small compared with xi -f- XQ it follows, that the problem
of induction motor design consists in constructing the motor so

as to give the minimum possible reactances, x\ + XQ.

Starting Torque

166. In the moment of starting an induction motor, the slip is

s = 1;

hence, starting current,

0*1 +jxi) + 0*0 -h jxo) + 0*i +jxi) + 0"o +jxo) (g jb)
'

or, expanded, with the rejection of the last term in the denomi-

nator, as insignificant,

r ) + 0(ri[ri + r ] + x^Xi + X Q])

r
] -f xi[xi + X Q])

-
g

r )

T _ i ii ii Q -,

2

and, displacement of phase, or angle of lag,

_ (xi + XQ) + b (rt [ri + r ]~
r ) + g 0*1 [ri + r ]
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Neglecting the exciting current, g = =
b, these equations

assume the form,

7 =
r )

2 + (xi + *o)
2

(r t + r )

or, eliminating imaginary quantities,

= = Q
~

V(ri + r )
2 + (zi + *o)

2
:

*
;

and
. Xi+X

tan 0n -
;

--
T\ + r

That means, that in starting the induction motor without

additional resistance in the armature circuit in which case

Xi + XQ is large compared with r\ + r
,
and the total impe-

dance, z, small the motor takes excessive and greatly lagging

currents.

The starting torque is

47T/ Z 2
*

That is, the starting torque is proportional to the armature

resistance, and inversely proportional to the square of the total

impedance of the motor.

It is obvious thus, that, to secure large starting torque, the

impedance should be as small, and the armature resistance as

large, as possible. The former condition is the condition of

large maximum output and good efficiency and speed regula-

tion; the latter condition, however, means inefficiency and poor

regulation, and thus cannot properly be fulfilled by the internal

resistance of the motor, but only by an additional resistance

which is short-circuited while the motor is in operation.

Since, necessarily,

n < z,

we have,

and since the starting current is, approximately
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we have,

-L/00
=

~A r-C'O-t
47T/

would be the theoretical torque developed at 100 per cent,

efficiency and power-factor, by e.m.f. E
,
and current /, at

synchronous speed.

Thus,
D < Doo,

and the ratio between the starting torque, Do, and the theo-

retical maximum torque, Doo, gives a means to judge the per-

fection of a motor regarding its starting torque.
DQ

This ratio, yy-,
exceeds 0.9 in the best motors.

pi

Substituting I = in the equation of starting torque, it

assumes the form,

Since - = synchronous speed, it is:

'

The starting torque of the induction motor is equal to the resistance

loss in the motor armature, divided by the synchronous speed.

The armature resistance which gives maximum starting torque
is

"

=
dn

or since,

Do =
4vr/ (r! + r )

2 + (

T~ ~^~~
\

=
0>

dri ( ri

expanded, this gives,

the same value as derived in the paragraph on "maximum

torque."

Thus, adding to the internal armature resistance, r'i, in start-

ing the additional resistance,

15
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makes the motor start with maximum torque, while with

increasing speed the torque constantly decreases, and reaches

zero at synchronism. Under these conditions, the induction

motor behaves similarly to the continuous-current series motor,

varying in speed with the load, the difference being, however,
that the induction motor approaches a definite speed at no-load,

while with the series motor the speed indefinitely increases with

decreasing load.

10 20 so 40 GO 70 90 100?.

20 H.P. THREE-PHASE INDUCTION MOTOR
110 VOLTS, 900 REVOLUTIONS, 6O CYCLES

Y = .1-.4J r l=.02/.045/.18 / .75
Z =.03 + .09j
Z,=.02 + -085J

10 20 30 40 50 60 70 80 90 100
SPEED, PER CENT SYNCHRONISM

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

AMPERES

FIG. 120.

The additional armature resistance, r"i, required to give

a certain starting torque, is found from the equation of starting

torque :

Denoting the internal armature resistance by r'i, the total

armature resistance is TI = r'i -f- r"i,

and thus,

qpiE ( r"i

hence,
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This gives two values, one above, the other below, the maxi-

mum torque point.

Choosing the positive sign of the root, we get a larger armature

resistance, a small current in starting, but the torque constantly

decreases with the speed.

Choosing the negative sign, we get a smaller resistance, a

large starting current, and with increasing speed the torque

first increases, reaches a maximum, and then decreases again

toward synchronism.
These two points correspond to the two points of the speed-

torque curve of the induction motor, in Fig. 120, giving the

desired torque, D .

The smaller value of r"\ gives fairly good speed regulation,

and thus in small motors, where the comparatively large start-

ing current is no objection, the permanent armature resistance

may be chosen to represent this value.

The larger value of r"\ allows to start with minimum current',

but requires cutting out of the resistance after the start, to

secure speed regulation and efficiency.

167. Approximately, the torque of the induction motor at

any slip, s:

D = -^-, r

can be expressed in a simple and so convenient form as function

of the maximum torque:

Dt =
c

or of the starting torque: s = 1 :

Dividing D by D t we have

D = i on
(ri + sr )

2 + s2
(x l + * )

2

Since r
,.
the primary resistance, is small compared with

x = xi + XQ,
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the total self-inductive reactance of the motor, it can be neg
lected under the square root, and the equation so gives :

=

or, still more approximately:

-

and the starting torque, for : s = 1 :

hence, dividing,

D ._ (ri
2 + x*)" "

or, if 7*1 is small compared with x, that is, in a motor of low

resistance armature:

sx2

D =
o ; o DQ,

From the equation:

it follows that for small values of s, or near synchronism:

by neglecting s2x2
compared with ri

2
:

For low values of speed, or high values, of s, it follows, by

neglecting ri
2
compared with s2x2

:

that is, approximately, near synchronism, the torque is directly

proportional to the slip, and inversely proportional to the

armature resistance, that is, proportional to the ratio

r -
;
near standstill, the torque is inversely pro-armature resistance'

portional to the slip, but directly proportional to the armature

resistance, and so is increased by increasing the armature resist-

ance in a motor of low-armature resistance.
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Synchronism

168. At synchronism, s = 0, we have,

Ia
= E (g -jb);

or,

p =
o, D =

0;

that is, power and torque are zero. Hence, the induction

motor can never reach complete synchronism, but must slip

sufficiently to give the torque consumed by friction.

Running near Synchronism

169. When running near synchronism, at a slip, s, above

the maximum output point, where s is small, from 0.01 to 0.05

at full-load, the equations can be simplified by neglecting terms

with s, as of higher order.

We then have, current,

T
s + n (fir

-
jb)

1 -

yr
~ Eo '

or, eliminating imaginary quantities,

angle of lag,

tan 0o =

_
:

or, inversely,

s =

that is,

S
2
(X\ -f X ) + Ti

2b
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in speed, is proportional to the armature resistance, r\, and to the

power, P, or torque, D.

EXAMPLE

170. As an example are shown, in Fig. 120, characteristic

curves of a 20-hp. three-phase induction motor, of 900 revolutions

synchronous speed, 8 poles, frequency of 60 cycles.

32
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5 24

O 22
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Primary admittance, Y = 0.1 0.4 j.

Primary impedance, Z = 0.03 + 0.09 j.

Secondary impedance, Z\ 0.02 + 0.085 j.

In Fig. 120 is shown, with the speed in per cent, of synchronism,
as abscissas, the torque in kilogram-meters as ordinates in drawn

lines, for the values of armature resistance:

TI = 0.02 : short-circuit of armature, full speed.

TI = 0.045: 0.025 ohms additional resistance.

TI = 0.18 : 0.16 ohms additional, maximum starting torque.

7*1
= 0.75 : 0.73 ohms additional, same starting torque as

n = 0.045.

20 H. P. THREE-PHASE
|

INDUCTION MOTOR
110 VOLTS, 900 REVOLUTIONS

60 CYCLES
SPEED DIAGRAM

Y =.1 - 4 j

Z =.03 +.09J
Z 1=.045 +.085j

Speed, Percent of Synchronism

FIG. 122.

On the same figure is shown the current per line, in dotted

lines, with the verticals or torque as abscissas, and the hori-

zontals or amperes as ordinates. To the same current always

corresponds the same torque, no matter what the speed may be.

On Fig. 121 is shown, with the current input per line as

abscissas, the torque in kilogram-meters and the output in horse-

power as ordinates in drawn lines, and the speed and the mag-

netism, in per cent, of their synchronous values, as ordinates in

dotted lines, for the armature resistance, r\ = 0.02, or short-

circuit.



232 ALTERNATING-CURRENT PHENOMENA

In Fig. 122 is shown, with the speed, in per cent, of synchro-

nism, as abscissas, the torque in drawn line, and the output in

dotted line, for the value of armature resistance TI =
0.045,

for the whole range of speed from 120 per cent, backward

speed to 200 per cent, beyond synchronism, showing the two

maxima, the motor maximum at s = 0.25, and the generator
maximum at s = 0.25.

171. As seen in the preceding, the induction motor is charac-

terized by the three complex imaginary constants,

Yo = g Q jbo, the primary exciting admittance,

ZQ = rQ + jxo, the primary self-inductive impedance, and

Zi =
7*1 + jxi, the secondary self-inductive impedance,

reduced to the primary by the ratio of secondary to primary
turns.

From these constants and the impressed e.m.f., e Q ,
the motor

can be calculated as follows:

Let,

e = counter e.m.f. of motor, that is, e.m.f. generated in the

primary by the mutual magnetic flux.

At the slip, s, the e.m.f. generated in the secondary circuit is se.

Thus the secondary current,

where
sr l

and a 2
=

The primary exciting current is,

loo = eY = e (g jbQ);

thus, the total primary current,

7 = /i + Too = e (bi jb2),

where,

bi = fli -f- go, and 62 #2 ~f- bo.

The e.m.f. consumed by the primary impedance is,

E 1 = I Z = e (r + jxQ) (bi
-

j'6 2);

the primary counter e.m.f. is e, thus the primary impressed

e.m.f.,
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E = e + E l = 6 ci
-

where,

d = 1 + r &i + Xobz and 02 =

or, the absolute value is,

e Q
= e Vci 2

H- c2
2
,

hence,

= e

Vci 2 + C2
2

Substituting this value gives,

Secondary current,

/ _ i ja
2

\/Ci
2 + c2

2>

Primary current,

Impressed e.m.f.,

Ci

VC! 2 +C2
2

Thus torque, in synchronous watts (that is, the watts output
which the torque would produce at synchronous speed),

D = lehV

hence, the torque in absolute units,

(Cl
2 + c2

2
) 2wf

where/ = frequency.

The power output is torque times speed, thus:

The power input is,

Po = [Eo/o]
= [Eo/o]

1 -
j

e 2
(bid
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The volt-ampere input,

Pan
= 0/0 =

+ 6 2
2

c2

P
(
OWER OUTPUT

1000 2000 8000 4000 5000

FIG. 123.

hence, the efficiency is,

the power-factor,
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the apparent efficiency,

Pi

the torque efficiency,
1

(1
-

s)

235

FIG. 124.

and the apparent torque efficiency,
2

D a

C2
2
)

172. Most instructive in showing the behavior of an induction

motor are the load curves and the speed curves.

The load curves are curves giving, with the power output as

abscissas, the current input, speed, torque, power-factor, effi-

ciency, and apparent efficiency, as. ordinates.

The speed curves give, with the speed as abscissas, the torque,

1 That is the ratio of actual torque to torque which would be produced, if

there were no losses of energy in the motor, at the same power input.
2 That is the ratio of actual torque to torque which would be produced if

there were neither losses of energy nor phase displacement in the motor, at

the same volt-ampere input.
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current input, power-factor, torque efficiency, and apparent

torque efficiency, as ordinates.

The load curves characterize the motor especially at its

normal running speeds near synchronism, while the speed
curves characterize it over the whole range of speed.

In Fig. 123 are shown the load curves, and in Fig. 124 the

speed curves of a motor having the constants: YQ = 0.01 0.1 j;

ZQ
= 0.1 + 0.3 j; and Z l

= 0.1 + 0.3 j.



CHAPTER XIX

INDUCTION GENERATORS

173. In the foregoing, the range of speed from s = 1, stand-

still, to s =
0, synchronism, has been discussed. In this range

the motor does mechanical work.

It consumes mechanical power, that is, acts as generator or as

brake outside of this range.

For s > 1, backward driving, PI becomes negative, repre-

senting consumption of power, while D remains positive; hence,

since the direction of rotation has changed, represents con-

sumption of power also. All this power is consumed in the

motor, which thus acts as brake.

For s < 0, or negative, PI and D become negative, and the

machine becomes an electric generator, converting mechanical

into electric energy.
The calculation of the induction generator at constant fre-

quency, that is, at a speed increasing with the load by the

negative slip, si, is the same as that of the induction motor

except that Si has negative values, and the load curves for the

machine shown as motor in Fig. 122, are shown in Fig. 125 for

negative slip Si as induction generator.

Again, a maximum torque point and a maximum output

point are found, and the torque and power increase from zero

at synchronism up to a maximum point, and then decrease again,

while the current constantly increases.

174. The induction generator differs essentially from the

ordinary synchronous alternator in so far as the induction

generator has a definite power-factor, while the synchronous
alternator has not. That is, in the synchronous alternator

the phase relation between current and terminal voltage entirely

depends upon the condition of the external circuit. The in-

duction generator, however, can operate only if the phase
relation of current and e.m.f., that is, the power-factor required

by the external circuit, exactly coincides with the internal

power-factor of the induction generator. This requires that

237
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the power-factor either of the external circuit or of the induction

generator varies with the voltage, so as to permit the generator

and the external circuit to adjust themselves to equality of

power-factor.

Beyond magnetic saturation the power-factor decreases;

that is, the lead of current increases in the induction machine.

Thus, when connected to an external circuit of constant power-
factor the induction generator will either not generate at all,

if its power-factor is lower than that of the external circuit, or,

if its power-factor is higher than that of the external circuit, the

ElECTBICAU OUTPUT^ ,P

-1000
I
-2000

|
-3000 -4000

( -.soft) |
-6000

FIG. 125.

voltage will rise until by magnetic saturation in the induction

generator its power-factor has fallen to equality with that of

the external circuit. This, however, requires magnetic satura-

tion in the induction generator, in some part of the magnetic

circuit, as for instance in the armature teeth.

To operate below saturation that is, at constant internal

power-factor the induction generator requires an external

circuit with leading current, whose power-factor varies with the

voltage, as a circuit containing synchronous motors or syn-

chronous converters. In such a circuit, the voltage of the

induction generator remains just as much below the counter

e.m.f. of the synchronous motor as is necessary to give the
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required leading exciting current of the induction generator, and

the synchronous motor can thus to a certain extent be called

the exciter of the induction generator.

When operating self-exciting, that is, shunt-wound, con-

verters from the induction generator, below saturation of both

the converter and the induction generator, the conditions are

unstable also, and the voltage of one of the two machines must

rise beyond saturation of its magnetic field.

When operating in parallel with synchronous alternating cur-

rent generators, the induction generator obviously takes its

leading exciting current from the synchronous alternator, which

thus carries a lagging wattless current.

175. To generate constant frequency, the speed of the in-

duction generator must increase with the load. Inversely,

when driven at constant speed, with increasing load on the

induction generator, the frequency of the current generated

thereby decreases. Thus, when calculating the characteristic

curves of the constant-speed induction generator, due regard

has to be taken of the decrease of frequency with increase of

load, or what may be called the slip of frequency, s.

Let, in an induction generator,

YQ =
00 j&o = primary exciting admittance,

ZQ = ro + JXQ = primary self-inductive impedance,

Zi =
7*1 -\-jxi

= secondary self-inductive impedance,

reduced to primary, all these quantities being reduced to the

frequency of synchronism with the speed of the machine, /.

Let e = generated em.f., reduced to full frequency.

s = slip of frequency, thus: (1 s) / = frequency generated

by machine.

We then have

the secondary generated e.m.f.,

se:

thus, the secondary current,

.

1
~

i

where,
,

and 2
=

the primary exciting current,

7oo = EYQ
= e (gQ

-
jb ),
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thus, the total primary current,

7 = /] + /oo = e(bi
-

jbz),

where,

bi = di + gQ and 6 2
= a2 + &o;

the primary impedance voltage,

E l = 7 (r +j[l -
s]xb);

the primary generated e.m.f. is,

6(1 -).

Thus, primary terminal voltage,

E = 6(1
-

s)
- 7 (r + j[l

-
&]XQ)

= e(ci
-

jc2),

where,

Ci = 1 s r 6i (1 s)zo&2 and c2 = (1 s)x bi r 62 ,

hence, the absolute value is,

6 = 6\/Ci
2 + C2

2
,

and,

= e
=

Vci2 + c2
2

'

Thus,
the secondary current,

1* ~
/ ^T* ^ !

=

the primary current,

7 =
> . . =^> -^o

=

the primary terminal voltage,

6p (Ci
-

J
:

the torque and mechanical power input,

= p -
=

ifJ
l

c-?r^
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the electrical output,

Po = Po 1 - JPJ = [EoI ]
=

-
j (62ci

-

the volt-ampere output,

241

2

ELECTRICAL OUTPUTrP , WATTS
aOQO 8000 I 4000 5QOO I

the efficiency,

Pi

the power-factor,

FIG. 126.

+ &2C

^o 1

cos 6 = TT-
6 2c

C2
2
)

or,

tan _

Po 1

In Fig. 126 is plotted the load characteristic of a constant-

speed induction generator, at constant terminal voltage e = 110,
16
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and the constants: F = 0.01 -
O.lj; Z = 0.1 + 0.3 j, and

Zi = 0.1 + 0.3 j.

176. As an example may be considered a power transmission

from an induction generator of constants YQ} Z
, Zi, over a

line of impedance, Z = r + jz, into a synchronous motor of

synchronous impedance, Z2
= r2 + jz2 , operating at constant-

field excitation.

Let e counter e.m.f. or nominal generated e.m.f. of syn-
chronous motor at full frequency; that is, frequency of synchro-
nism with the speed of the induction generator. By the preced-

ing paragraph the primary current of the induction generator was,

Io =
e(bi

the primary terminal voltage,

EQ
=

e(ci
-

jc2) ;

thus, terminal voltage at synchronous motor terminals,

E' = E - Jo (r + j [1
-

s]x)

= e(di
-

jd2),

where,

di = Ci rbi (1 s) & 2 and dz
= c 2 + (1 s) xbi r& 2 ;

the counter e.m.f. of the synchronous motor,

E 2
= Eo' - 7 (r2 + j [1

-
s]x2)

= e(ki - jkz) ;

where,

ki = di r 2bi (1 s) X 2b 2 and k z
= dz + (1 s) 2&i r2& 2 ,

or the absolute value

since, however,

we have,

Thus, the current,

*-

6 (1 s)
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the terminal voltage at induction generator,

7? _ go(l
-

s) (ci
-

jc2)

243

OUTRUT OF SYNCHRONOUS, WATTS
8000 4000

FIG. 127.

and the terminal voltage at the synchronous motor,

,_eo(l
-

s)(di -jd2).
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herefrom in the usual way the efficiencies, power-factor, etc.,

are derived.

When operated from an induction generator, a synchronous
motor gives a load characteristic very similar to that of an

induction motor operated from a synchronous generator, but

in the former case the current is leading, in the latter lagging.

In either case, the speed gradually falls off with increasing

load (in the synchronous motor, due to the falling off of the

frequency of the induction generator), up to a maximum output

point, where the motor drops out of step and comes to standstill.

Such a load characteristic of the induction generator in Fig.

126, feeding a synchronous motor of counter e.m.f. e = 125 volts

(at full frequency) and synchronous impedance Z 2
= 0.04 + 6 j,

over a line of negligible impedance is shown in Fig. 127.



CHAPTER XX

SINGLE-PHASE INDUCTION MOTORS

177. The magnetic circuit of the induction motor at or near

synchronism consists of two magnetic fluxes superimposed upon
each other in quadrature, in time, and in position. In the

polyphase motor these fluxes are produced by e.m.fs. displaced
in phase. In the monocyclic motor one of the fluxes is due to

the primary power circuit, the other to the primary exciting

circuit. In the single-phase motor the one flux is produced by
the primary circuit, the other by the currents produced in the

secondary or armature, which are carried into quadrature posi-

tion by the rotation of the armature. In consequence thereof,

while in all these motors the magnetic distribution is the same
at or near synchronism, and can be represented by a rotating

field of uniform intensity and uniform velocity, it remains such

in polyphase and monocyclic motors; but in the single-phase

motor, with increasing slip that is, decreasing speed the -

quadrature field decreases, since the secondary armature cur-

rents are not carried to complete quadrature position; and thus

only a component is available for producing the quadrature flux.

Hence, approximately, the quadrature flux of a single-phase

motor can be considered as proportional to its speed; that is,

it is zero at standstill.

Since the torque of the motor is proportional to the product
of secondary current times magnetic flux in quadrature, it

follows that the torque of the single-phase motor is equal to

that of the same motor under the same condition of operation
on a polyphase circuit, multiplied with the speed; hence equal
to zero at standstill.

Thus, while single-phase induction motors are quite satisfac-

tory at or near synchronism, their torque decreases proportionally
with the speed, and becomes zero at standstill. That is, they
are not self-starting, but some starting device has to be used.

Such a starting device may either be mechanical or electrical.

All the electrical starting devices essentially consist in impress-
245
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ing upon the motor at standstill a magnetic quadrature flux.

This may be produced either by some outside e.m.f., as in the

monocyclic starting device, or by displacing the circuits of two
or more primary coils from each other, either by mutual induc-

tion between the coils that is, by using one as secondary
to the other or by impedances of different inductance factors

connected with the different primary coils.

178. The starting devices of the single-phase induction motor

by producing a quadrature magnetic flux can be subdivided

into three classes:

1. Phase-Splitting Devices. Two or more primary circuits

are used, displaced in position from each other, and either in

series or in shunt with each other, or in any other way related,

as by transformation. The impedances of these circuits are

made different from each other as much as possible to produce
a phase displacement between them. This can be done either

by inserting external impedances in the circuits, as a condenser

and a reactive coil, or by making the internal impedances of the

motor circuits different, as by making one coil of high and the

other of low resistance.

2. Inductive Devices. The different primary circuits of

the motor are inductively related to each other in such a way
as to produce a phase displacement between them. The induct-

ive relation can be outside of the motor or inside, by having
the one coil submitted to the inductive action of the other; and
in this latter case the current in the secondary coil may be made

leading, accelerating coil, or lagging, shading coil.

3. Monocyclic Devices. External to the motor an essentially

wattless e.m.f. is produced in quadrature with the main e.m.f.

and impressed upon the motor, either directly or after com-

bination with the single-phase main e.m.f. Such wattless

quadrature e.m.f. can be produced by the common connection

of two impedances of different power-factor, as an inductive

reactance and a resistance, or an inductive and a condensive

reactance connected in series across the mains.

The investigation of these starting-devices offers a very
instructive application of the symbolic method of investiga-

tion of alternating-current phenomena, and a study thereof

is thus recommended to the reader. 1

1 See paper on the Single-phase Induction Motor, A. I. E. E. Transactions,

1898.
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179. Occasionally, no special motors are built for single-phase

operation, but polyphase motors used in single-phase circuits,

since for starting the polyphase primary winding is required,

the single primary-coil motor obviously not allowing the appli-

cation of phase-displacing devices for producing the starting

quadrature flux.

Since at or near synchronism, at the same impressed e.m.f.

that is, the same magnetic density the total volt-amperes
excitation of the single-phase induction motor must be the same
as of the same motor on polyphase circuit, it follows that by
operating a quarter-phase motor from single-phase circuit on

one primary coil, its primary exciting admittance is doubled.

Operating a three-phase motor single-phase on one circuit its

primary exciting admittance is trebled. The self-inductive

primary impedance is the same single-phase as polyphase, but

the secondary impedance reduced to the primary is lowered,

since in single-phase operation all secondary circuits corre-

spond to the one primary circuit used. Thus the secondary

impedance in a quarter-phase motor running single-phase is

reduced to one-half, in a three-phase motor running single-

phase reduced to one-third. In consequence thereof the slip of

speed in a single-phase induction motor is usually less than in a

polyphase motor; but the exciting current is considerably

greater, and thus the power-factor and the efficiency are lower.

The preceding considerations obviously apply only when

running so near synchronism that the magnetic field of the

single-phase motor can be assumed as uniform, that is, the

cross-magnetizing flux produced by the armature as equal to

the main magnetic flux.

When investigating the action of the single-phase motor at

lower speeds and at standstill, the falling off of the magnetic

quadrature flux produced by the armature current, the change
of secondary impedance, and where a starting device is used

the effect of the magnetic field produced by tne starting device,

have to be considered.

The exciting current of the single-phase motor consists of

the primary exciting current or current producing the main

magnetic flux, and represented by a constant admittance, Fo 1

,

the primary exciting admittance of the motor, and the secondary

exciting current, that is, that component of primary current

corresponding to the secondary current which gives the excita-
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tion for the quadrature magnetic flux. This latter magnetic
flux is equal to the main magnetic flux, $o, at synchronism,
and falls off with decreasing speed to zero at standstill, if no

starting device is used, or to 3>i = $ at standstill if by a start-

ing device a quadrature magnetic flux is impressed upon the

motor, and at standstill t = ratio of quadrature or starting

magnetic flux to main magnetic flux.

Thus the secondary exciting current can be represented by an

admittance, IV, which changes from equality with the primary

exciting admittance, IV at synchronism to Fi 1 =
0, respect-

ively to Fi 1 = ZFo 1 at standstill. Assuming thus that the

starting device is such that its action is not impaired by the

change of speed, at slip s the secondary exciting admittance

can be represented by: .

Fi 1 =
[1
-

(1
-

s] Fo 1
.

The secondary impedance of the motor at synchronism is

the joint impedance of all the secondary circuits, since all

secondary circuits correspond to the same primary circuit,
7 7

hence =
-5- with a three-phase secondary, and = -* with a

two-phase secondary with impedance Z\ per circuit.

At standstill, however, the secondary circuits correspond to

the primary circuit only with their projection in the direction

of the primary flux, and thus as resultant only one-half of the

secondary circuits are effective, so that the secondary impe-
2 7

dance at standstill is equal to -^ with a three-phase, and equalo

to Zi with a two-phase, secondary. Thus the effective second-

ary impedance of the single-phase motor changes with the speed

and can at the slip s be represented by Zi 1 =
Q

-
1

in a
o

three-phase secondary, and Zi 1 = ~ in a two-phasez

secondary, with the impedance Zi per secondary circuit.

In the single-phase motor without starting device, due to

the falling off of the quadrature flux, the torque at slip s is :

D = a^ (1
-

s).

(a and e see paragraph 171.)

In a single-phase motor with a starting device which at
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standstill produces a ratio of magnetic fluxes t, the torque at

standstill is

Do =
tDi,

where DI = a\e^ = total torque of the same motor on polyphase
circuit.

Thus denoting the value
-^~

=
v, the single-phase motor torque

at standstill is:

Z) =vDi= aie
2
v,

and the single-phase motor torque at slip s is :

D = aie*[l - (I
-

v) s].

180. In the single-phase motor considerably more advan-

tage is gained by compensating for the wattless magnetizing

component of current by capacity than in the polyphase motor,
where this wattless component of the current is relatively

small. The use of shunted capacity, however, has the dis-

advantage of requiring a wave of impressed e.m.f. very close

to sine shape, since even with a moderate variation from sine

shape the wattless charging current of the condenser of higher

frequency may lower the power-factor more than the compen-
sation for the wattless component of the fundamental wave
raises it, as will be seen in the chapter on General Alternating-

current Waves.

Thus the most satisfactory application of the condenser

in the single-phase motor is not in shunt to the primary circuit,

but in a tertiary circuit; that is, in a circuit stationary with

regard to the primary impressed circuit but submitted to in-

ductive action by the revolving secondary circuit.

In this case the condenser is supplied with an e.m.f. trans-

formed twice, from primary to secondary and from secondary
to tertiary, through multitooth structures in a uniformly re-

volving field, and thus a very close approximation to sine wave

produced at the condenser, irrespective of the wave-shape
of primary impressed e.m.f.

With the condenser connected into a tertiary circuit of a

single-phase induction motor, the wattless magnetizing current

of the motor is supplied by the condenser in a separate circuit,

and the primary coil carries the power current only, and thus

the efficiency of the motor is essentially increased.



250 ALTERNATING-CURRENT PHENOMENA

The tertiary circuit may be at right angles to the primary,
or under any other angle. Usually it is applied on an angle

of 45 to 60, so as to secure a mutual induction between tertiary

and primary for starting, which produces in starting in the con-

denser a leading current, and gives the quadrature magnetic
flux required.

181. The most convenient way to secure this arrangement
is the use of a three-phase motor which with two of its ter-

minals, 1-2, is connected to the single-phase mains, and with

terminals 1 and 3 to a condenser.

Let FO =
go jbQ

= primary excitin'g admittance of the motor

per delta circuit.

ZQ = r + jxo
= primary self-inductive impedance per delta

circuit.

Zi =
7*1 + jXi = secondary self-inductive impedance per delta

circuit reduced to primary.

Let

F3
=

03 + jb 3
= admittance of the condenser connected be-

tween terminals 1 and 3.

If then, as single-phase motor,

t ratio of auxiliary quadrature flux to main flux in

starting,

h = ratio of e.m.f. generated in condenser circuit to

e.m.f. generated in main circuit in starting,

starting torque

aie
2 in starting

Operating single-phase

3V = 1.5 F = 1.5(00 jbo)
= primary exciting admit-

tance;

Fi 1 = 1.5 F [l
-

(1
-

s]

= 1.5 (gQ jbo) [1 (1 t) s]
= secondary exciting

admittance at slip s;

2Z 2(r + jxo)
Zo 1 =

5- = -
gr^

- = primary self-inductive impe-o 6

dance;

Zl i = (L+_!) Zl = (1+j)
(ri + jsxj = secondary self-

inductive impedance;

Z2
i = 2Z = 2(r +jx ) = tertiary self.inductive impe-

o o

dance of motor.
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Thus,

F 4
= - = total admittance of tertiary circuit.

Since the e.m.f. generated in the tertiary circuit decreases

from e at synchronism to he at standstill, the effective tertiary
admittance or admittance reduced to a generated e.m.f., e, is

at slip s,

F 4
L =

[1
-

(1
-

K)s]Yt.
Let then,

e = counter e.m.f. of primary circuit,

s = slip.

We have,

the secondary load current,

=
(a '

-
ja^'

the secondary exciting current,

/ji = eY^ = 1.5 eYo [1
-

(1
-

t) [s;

the secondary condenser current;

thus, the total secondary current,

the primary exciting current,

V = eYQ
l = 1.5 eY

,

thus, the total primary current,

7 = 7 1 + /o
1 = /i + / 4 + 7!

1 + 7e? =
e(b,

-
J6 2);

the primary impressed e.m.f.,

EQ
= e + ZQ

1I =
e(ci jc2 );

thus, the main counter e.m.f.,

e = _. t

or,
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and the absolute value,

eo
e =

hence, the primary current,

T
e Q(b 1

-
j

to = ^

or,

The volt-ampere input,

the power input,

p =|7 e li= 2 MijH>2C2.
Ci

2 + C2
2 '

the torque at slip s,

and the power output,

P = D (1
-

s)

and herefrom in the usual manner may be derived the efficiency,

apparent efficiency, torque efficiency, apparent torque efficiency,

and power-factor.

The derivation of the constants, t, h, v, which have to be

determined before calculating the motor, is as follows:

Let eQ = single-phase impressed e.m.f.,

Y = total stationary admittance of motor per delta circuit,

EZ = e.m.f. at condenser terminals in starting.

In the circuit between the single-phase mains from terminal

1 over terminal 3 to 2, the admittances, Y + Fa, and F, are con-

nected in series, and have the respective e.m.fs., E% and eQ E3 .

It is thus,
Trr i T/- _._ T/

1

777 _._ 77F

since with the same current in both circuits, the impressed
e.m.fs. are inversely proportional to the respective admittances.

Thus,

F e F
^ ~2 Y + F3

=
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and the quadrature e.m.f. is

hence,

and

253

+ 7i 2
2

.

Since in the three-phase e.m.f. triangle, the altitude corre-

sponding to the quadrature magnetic flux =
^= and the

""v 3

quadrature and main fluxes are equal, in the single-phase motor
the ratio of quadrature to main flux is

t = ~ = 1.1557*2.
v 3

From t, v is derived as shown in the preceding.
182. The most frequently used starting device of single-phase

induction motors (with the exception of fan motors, in which the

E.I.Y,

|*,Jf,Y|

FIG. 128.

shading coil is commonly used) is the monocyclic starting device.

It consists in producing externally to the motor a system of

polyphase e.m.fs. with single-phase flow of energy, and im-

pressing it upon the motor, which is wound as polyphase, usually

three-phase motor.

Such a polyphase system of e.m.fs. with single-phase flow of

energy has been called a monocyclic system. It essentially

consists, or can be resolved into, a main or energy e.m.f,, in

phase with the flow of energy, and an auxiliary or wattless e.m.f.

in quadrature thereto.

If across the single-phase mains of voltage, e, two impedances
of different inductance factors, of the respective admittances,

Yi and F2 ,
are connected, the voltages, EI and E2 of these im-
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pedances are displaced from each other, thus forming with the

main voltage, e, a voltage triangle, or a more or less distorted

three-phase system, as shown in Fig. 128.

Connecting now a three-phase induction motor with two of

its terminals, 1 and 2, to the single-phase mains a, and 6, and

with its third terminal 3 to the common connection, c, of the two

impedances, a quadrature flux is produced in this motor, by the

traverse voltage, ES} of the monocyclic triangle, Fig. 128.

It is then:

#1 + E2
= e (1)

EZ EI = ES (2)

hence:

e

? 2 ~2
Let now, in Fig. 128.

Y = effective admittance of motor between terminals 1 and

2 at standstill.

Y3 = effective admittance of motor for the quadrature flux,

from terminal 3 to middle between 1 and 2.

As the voltage of this latter admittance is -^-\/3^ the altitude
z

of the three-phase motor triangle, and as the magnetic flux is the

same in all directions, in the polyphase motor, and the effective

admittances are proportional to the square of the voltage, it is:

Y, + y = g

hence:

Y 3
=
|F

Denoting the currents and voltages in the direction as shown

by the arrows in Fig. 128, it is:

7, = /!-/, (4)

and:

73
= F3#3

= | YE, (5)
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\ = YlE 1
= Yife -

(6)

(By equation (3)) substituting (5) and (6) into (4), gives, after

transposing:
e Y, - F 2

2 ._
L v L 4 (7)

Substituting (7) into (3), (5), (6) then gives the voltages and

currents :

Ei, EZ, /a, Iij Iz

The current traversing the motor from terminal 1 to terminal 2

is

If = eY (8)

and upon this superimpose the return of the current / 3 ,
so that

current

I'* = 6F + ^/ 3 (9)

leaves terminal 2, and current

f'i
= eY - ~ 7 3 (10)

enters terminal 1.

The total current taken by the motor and starting device from

the single-phase mains then is:

/ = h + /'i 1

(ID

and herefrom follows the volt-ampere input:

Q = el (12)

while on polyphase supply, the volt-ampere input is:

QQ =2 el' = 2e 2Y (13)

thus the ratio of volt-ampere inputs is:

Q I

Qo 2eY (14)

The ratio of the starting torque of the motor with the monocyc-
lic starting device, to that of the same motor on three-phase
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supply, is the ratio of the quadrature fluxes, which is proportional

to the quadrature voltages:

BJ
j

y. - '==
where the index, j y denotes, that only the quadrature term of the

expression is effective in producing torque.

The ratio of the apparent starting torque efficiencies thus is :

(16)

183. Usually a resistance and a reactance are used as the two

impedances of the monocyclic starting device, as the cheapest,

though the triangle produced thereby has a low altitude, E2) and

starting torque and torque efficiency thus are comparatively low.

Let as illustration, in the three-phase motor, Figs. 122 and 123,

a resistance-reactance starting device be used of the values : r =
1 ohm, and x = 1 ohm hence:

In this motor, at standstill, it is, per delta circuit:

(a) Without start- (6) With secondary

ing resistance : resistance i n -

creased ten fold:

Voltage: e = 110 volts

Current: i = 176 amp. 8.97 amp.

Torque: D = 2.93 syn. kw. 7.38 syn. kw.

Power-factor: p = 0.313 0.835

Hence the current,

vectorially: / = 55 - 167 j 75 - 49 j

and the admittance, per motor

circuit: Y' = 0.5 - 1.52 j 0.68 - 0.45 j

Hence, the effective admittance, between two motor terminals 1

and 2:

Y = 1.5 Y' = 0.75 - 2.28 j 1.02 - 0.67 j

Herefrom follows:

Quadrature voltage: E9
= - 5.5 + 16.3 j 2.7 + 25.5 j
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Relative starting

torque: t = 0.172 0.268

Starting torque: 3 tD = 1.52 syn. kw. 6.73 syn. kw.

As seen, with starting resistance in the secondary circuit, a

fairly good starting torque is given by this device; but with

short-circuited armature, the starting torque is low.

184. The greater the difference in the inductance factors of

the two impedances in the starting device, the higher values of

quadrature voltage, E 3 ,
and thus of starting torque are available.

The combination of inductance and capacity thus gives the

highest torque, and by such combination, true three-phase rela-

tion can be secured, that is, the conditions brought about:

E l
= E2

= e

The starting by condenser in the tertiary circuit, of a three-

phase motor, can be considered as a special case of the mono-

cyclic starting device, for FI = and F2
= capacity susceptance.

A further extension of the monocyclic starting device is, to use

another induction motor, which is running at speed, to supply
the quadrature voltage, Es .

Thus, if a number of single-phase induction motors are oper-

ated near each other, as in the same factory, etc., they can all be

made self-starting except the first one by connecting their

third terminals together. That is, connecting a number of three-

phase induction motors, with two of their terminals, 1, 2 to

single-phase mains a, 6, and connecting all their third terminals, 3,

with each other by an interconnecting main, c, then, as soon as

one of the motors is running, all the others can be started by

drawing quadrature voltage and current from the one which is

running.

This is a convenient means of operating single-phase induction

motors self-starting without separate starting devices. It has

the further advantage, that an overloaded motor begins to draw

current over the interconnecting circuit, c, from the other motors,

as phase converters, and the maximum output of the individual

motors thereby is increased far beyond that of the motor as

single-phase motor, near to that as three-phase motor.

As single-phase motors, especially with armature resistance,

when once started and when not loaded, speed up from low speed
17
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to full speed, the first motor in such monocyclic interconnecting

system can be started by hand, after taking its load off.

For further discussion on the theory and calculation of the

single-phase induction motor, see American Institute Electrical

Engineers Transactions, January, 1898 and 1900.



SECTION V

SYNCHRONOUS MACHINES

CHAPTER XXI

ALTERNATING-CURRENT GENERATOR

185. In the alternating-current generator, e.m.f. is generated

in the armature conductors by their relative motion through a

constant or approximately constant magnetic field.

When yielding current, two distinctly different m.m.fs. are

acting upon the alternator armature the m.m.f. of the field

due to the field-exciting spools, and the m.m.f. of the armature

current. The former is constant, 'or approximately so, while the

latter is alternating, and in synchronous motion relatively to the

former; hence fixed in space relative to the field m.m.f., or uni-

FIG. 129.

directional, but pulsating in a single-phase alternator. In the

polyphase alternator, when evenly loaded or balanced, the result-

ant m.m.f. of the armature current is more or less constant.

The e.m.f. generated in the armature is due to the magnetic
flux passing through and interlinked with the armature con-

ductors. This flux is produced by the resultant of both m.m.fs.,

that of the field, and that of the armature.

On open-circuit, the m.m.f. of the armature is zero, and the

e.m.f. of the armature is due to the m.m.f. of the field-coils only.

In this case the e.m.f. is, in general, a maximum at the moment
when the armature coil faces the position midway between

adjacent field-coils, as shown in Fig. 129, and thus incloses

259
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no magnetism. The e.m.f. wave in this case is, in general,

symmetrical.
An exception to this statement may take place only in those

types of alternators where the magnetic reluctance of the arma-

ture is different in different directions; thereby, during the syn-
chronous rotation of the armature, a pulsation of the magnetic
flux passing through it is produced. This pulsation of the mag-
netic flux generates e.m.f. in the field-spools, and thereby makes
the field current pulsating also. Thus, we have, in this case, even

on open-circuit, no rotation through a constant magnetic field,

but rotation through a pulsating field, which makes the e.m.f.

wave unsymmetrical, and shifts the maximum point from its

theoretical position midway between the field-poles. In general

this secondary reaction can be neglected, and the field m.m.f.

be assumed as constant.

FIG. 130.

The relative position of the armature m.m.f. with respect to

the field m.m.f. depends upon the phase relation existing in the

electric circuit. Thus, if there is no displacement of phase be-

tween current and e.m.f., the current reaches its maximum at

the same moment as the e.m.f. or, in the position of the armature

shown in Fig. 129, midway between the field-poles. In this case

the armature current tends neither to magnetize nor demagnetize

the field, but merely distorts it; that is, demagnetizes the trail-

ing pole corner, a, and magnetizes the leading pole corner, b.

A change of the total flux, and thereby of the resultant e.m.f.,

will take place in this case only when the magnetic densities are

so near to saturation that the rise of density at the leading pole

corner will be less than the decrease of density at the trailing

pole corner. Since the internal self-inductive reactance of the

alternator itself causes a certain lag of the current behind the

generated e.m.f., this condition of no displacement can exist only

in a circuit with external negative reactance, as capacity, etc.
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If the armature current lags, it reaches the maximum later

than the e.m.f.
;
that is, in a position where the armature-coil

partly faces the field-pole which it approaches, as shown in dia-

gram in Fig. 130. Since the armature current is in ppposite direc-

tion to the current in the following field-pole (in a generator), the

armature in this case will tend to demagnetize the field.

If, however, the armature current leads that is, reaches its

maximum while the armature-coil still partly faces the field-pole

which it leaves, as shown in diagram, Fig. 131 it tends to

magnetize this field-pole, since the armature current is in the

same direction as the exciting current of the preceding field

spools.

Thus, with a leading current, the armature reaction of the

alternator strengthens the field, and thereby, at constant field

excitation, increases the voltage; with lagging current it weakens

FIG. 131.

the field, and thereby decreases the voltage in a generator. Ob-

viously, the opposite holds for a synchronous motor, in which the

armature current is in the opposite direction; and thus a lagging

current tends to magnetize, a leading current to demagnetize,
the field.

186. The e.m.f. generated in the armature by the resultant

magnetic flux, produced by the resultant m.m.f. of the field and

of the armature, is not the terminal voltage of the machine; the

terminal voltage is the resultant of this generated e.m.f. and the

e.m.f. of self-inductive reactance and the e.m.f. representing the

power loss by resistance in the alternator armature. That is,

in other words, the armature current not only opposes or assists

the field m.m.f. in creating the resultant magnetic flux, but sends

a second magnetic flux in a local circuit through the armature,

which flux does not pass through the field-spools, and is called

the magnetic flux of armature self-inductive reactance.
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Thus we have to distinguish in an alternator between armature

reaction, or the magnetizing action of the armature upon the

field, and armature self-inductive reactance, or the e.m.f. gener-

ated in the armature conductors by the current therein. This

e.m.f. of self-inductive reactance is (if the magnetic reluctance,

and consequently the reactance, of the armature circuit is as-

sumed as constant) in quadrature behind the armature current,

and will thus combine with the generated e.m.f. in the proper

phase relation. Obviously the e.m.f. of self-inductive reactance

and the generated e.m.f. do not in reality combine, but their

respective magnetic fluxes combine in the armature-core, where

they pass through the same structure. These component e.m.fs.

are therefore mathematical fictions, but their resultant is real.

This means that, if the armature current lags, the e.m.f. of self-

inductive reactance will be more than 90 behind the generated

e.m.f., and therefore in partial opposition, and will tend to reduce

the terminal voltage. On the other hand, if the armature cur-

rent leads, the e.m.f. of self-inductive reactance will be less than

90 behind the generated e.m.f., or in partial conjunction there-

with, and increase the terminal voltage. This means that the

e.m.f. of self-inductive reactance increases the terminal voltage

with a leading, and decreases it with a lagging current, or, in

other words, acts in the same manner as the armature reaction.

For this reason both actions can be combined in one, and repre-

sented by what is called the synchronous reactance of the alter-

nator. In the following, we shall represent the total reaction

of the armature of the alternator by the one term, synchronous

reactance. While this is not exact, as stated above, since the

reactance should be resolved into the magnetic reaction due to

the magnetizing action of the armature current, and the electric

reaction due to the self-induction of the armature current, it is

in general sufficiently near for practical purposes, and well suited

to explain the phenomena taking place under the various condi-

tions of load. This synchronous reactance, x, is occasionally not

constant, but is pulsating, owing to the synchronously varying
reluctance of the armature magnetic circuit, and the field mag-
netic circuit; it may, however, be considered in what follows as

constant; that is, the e.m.fs. generated thereby may be repre-

sented by their equivalent sine waves. A specific discussion of

the distortions of the wave shape due to the pulsation of the syn-

chronous reactance is found in Chapter XXVI. The synchron-
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ous reactance, x, is not a true reactance in the ordinary sense of

the word, but an equivalent or effective reactance. Sometimes the

total effects taking place in the alternator armature are repre-

sented by a magnetic reaction, neglecting the self-inductive re-

actance altogether, or rather replacing it by an increase of the

armature reaction or armature m.m.f. to such a value as to

include the self-inductive reactance. This assumption is often

made in the preliminary designs of alternators. Further dis-

cussion of the relation of armature reaction and self-induction

see "Theory and Calculation of Electrical Circuits" under

"Reactance and Apparatus."

187. Let EQ = generated e.m.f. of the alternator, or the e.m.f.

generated in the armature-coils by their rotation through the

constant magnetic field produced by the current in the field-

spools, or the open-circuit voltage, more properly called the
" nominal generated e.m.f./' since in reality it does not exist

as before stated.

Then
EQ

= V2 Trnf$ 10~8
;

where

n = total number of turns in series on the armature,

/ = frequency,
$ = total magnetic flux per field-pole.

Let

XQ
= synchronous reactance,

r = internal resistance of the alternator;

then

ZQ .= r H- jxQ
= internal impedance.

If the circuit of the alternator is closed by the external im-

pedance,
Z = r + jx,

the current

or,

A/(T*O + 2

and, the terminal voltage,

E = /Z =
-c/o /^o

(TO+ r) +j(x Q + x)
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or,

E =

E,
/I _1_ 9 r r + X<&

,

r 2

V 1 h2
r2 + X2 + -

or, expanded in a series,

7*o7* -i- X<&
'

r2 + z2
,T

4 (sr
-

!i

si
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and the values of the internal impedance,

ZQ
=

with the current, 7, as abscissas, the terminal voltages, E,
as ordinates in full line, and the kilowatts output, = 7 2

r, in

dotted lines, the kilovolt-amperes output, = IE, in dash-dotted

lines, for the following conditions of external circuit:

*b

1
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complete ellipses, giving also the negative or syn-
chronous motor part of the curves.

Such a curve is called a field characteristic.

As shown, the e.m.f. curve at non-inductive load is nearly
horizontal at open-circuit, nearly vertical at short-circuit, and

is similar to an arc of an ellipse.

With reactive load the curves are more nearly straight lines.

The voltage drops on inductive load and rises on capacity load.

26

24

no
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190. If the internal impedance is negligible compared with

the external impedance, then, approximately,

E =
VOo + r)

2 + (x + z)
2

that is, an alternator with small internal resistance and syn-

chronous reactance tends to regulate for constant-terminal voltage.

VOLTS ^ ^870 368Q-^>>
3600
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the synchronous reactance, X
, only as a term of second order in

the denominator.

On inductive circuit, however, x appears in the denominator

44

42

40

38

36

34

32

30

28
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24

{/>
22

l^o
8 is

x *
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reactance, x
,
of the alternator is very large compared with the

external resistance, r,

current

approximately, or constant; or, if the external circuit contains

the reactance, x,

T - -^o J^o

approximately, or constant.

In this case, the terminal voltage of a non-inductive circuit is

approximately proportional to the external resistance. In an

inductive circuit,

approximately proportional to the external impedance.
191. That is, on a non-inductive external circuit, an alter-

nator with very low synchronous reactance regulates for con-

stant-terminal voltage, as a constant-potential machine, an

alternator with a very high synchronous reactance regulates for

a terminal voltage proportional to the external resistance as a

constant-current machine.

Thus, every alternator acts as a constant-potential machine

near open-circuit, and as a constant-current machine near short-

circuit. Between these conditions, there is a range where the

alternator regulates approximately as a constant-power machine,
that is, current and e.m.f. vary in inverse proportion, as between

130 and 200 amp. in Fig. *132.

The modern alternators are generally more or less machines

of the first class; the old alternators, as built by Jablockkoff,

Gramme, etc., were machines of the second class, used for arc

lighting, where constant-current regulation is an advantage.

Very high-power steam-turbine alternators are now again built

with fairly high reactance, for reasons of safety.

Obviously, large external reactances cause the same regula-
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tion for constant current independently of the resistance, r,

as a large internal reactance, XQ .

On non-inductive circuit, if

r-
,

E

V(r + r )
2 + z 2

and

the output is

p = IE =
^2~

and
dP _ X 2 - r2 + r 2

Hence, if

or

'

i--
the power is a maximum, and

BJ
P =

#

and

2 {^o + r
}

Eo

I =

Therefore, with an external resistance equal to the internal

impedance, or, r = z = Vr 2 + # 2
,
tne output of an alternator

is a maximum, and near this point it regulates for constant

output; that is, an increase of current causes a proportional

decrease of terminal voltage, and inversely.

The field characteristic of the alternator shows this effect

plainly.



CHAPTER XXII

ARMATURE REACTIONS OF ALTERNATORS

192. The change of the terminal voltage of an alternating

current generator, resulting from a change of load at constant

field excitation, is due to the combined effect of armature

reaction and armature self-induction. The counter m.m.f. of

the armature current, or armature reaction, combines with the

impressed m.m.f. or field excitation to the resultant m.m.f.,

which produces the resultant magnetic field in the field poles

and generates in the armature an e.m.f. called the ''virtual

generated e.m.f./' since it has no actual existence, but is merely
a mathematical fiction. The counter e.m.f. of self-induction of

the armature current, that is, e.m.f. generated by the armature

current by a local magnetic flux, combines with the virtual

generated e.m.f. to the actual generated e.m.f. of the armature,
which corresponds to the magnetic flux in the armature core.

This combined with the e.m.f. consumed by the armature resist-

ance gives the terminal voltage.

In most cases the effect of armature reaction and of self-

induction are the same in character, and so both effects usually

are contracted in one constant; for purposes of design, frequently

the self-induction is represented by an increase of the armature

reaction, that is, an effective armature reaction used which com-

bines the effect of the true armature reaction and the armature

self-induction. That is, instead of the counter e.m.f. of self-

induction, a counter m.m.f. is used, which would produce the

magnetic flux which would generate the e.m.f. of self-induction.

For theoretical investigations usually the armature reaction is

represented by an effective self-induction, that is, instead of the

counter m.m.f. of the armature reaction, the e.m.f. considered,

which would be generated by the magnetic flux, which the arma-

ture reaction would produce. That is, both effects are com-

bined in an effective reactance, the "synchronous reactance."

While armature reaction and self-inductance are similar in

272
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effect, in some cases they differ in their action; the e.m.f. of

self-inductance is instantaneous, that is, appears and disappears
with the current to which it is due. The effect of the armature

reaction, however, requires time; the change of the magnetic field

resulting from the combination of the counter m.m.f. of arma-
ture reaction with the impressed m.m.f. of field excitation occurs

gradually, since the magnetic field flux interlinks with the field

winding, and any sudden change of the field generates an e.m.f.

in the field circuit, which temporarily increases or decreases the

field current, and so retards the change of the field flux. So, for

instance, a sudden increase of load results in a simultaneous

increase of the counter e.m.f. of self-induction and counter

m.m.f. of armature -reaction. With the armature reaction

demagnetizing the field, the field flux begins to decrease, and
thus generates an e.m.f. in the field-exciting circuit, which
increases the field current and retards the decrease of field

flux, so that the field flux adjusts itself only gradually to the

change of circuit conditions, at a rate of speed depending upon
the constants of the field-exciting circuit, etc.

The extreme case hereof takes place when suddenly short-

circuiting an alternator; at the first moment the short-circuit

current' is limited only by the self-inductance, and the magnetic
field still has full strength, the field-exciting current has greatly
increased by the e.m.f. generated in the field circuit by the arma-
ture reaction. Gradually the field-exciting current and there-

with the field magnetism die down to the values corresponding
to the short-circuit condition. Thus the momentary short-

circuit current of an alternator is far greater than the perma-
nent short-circuit current; many times in a machine of low

self-induction and high armature reaction, as a low-frequency,

high-speed alternator of large capacity; relatively little in a

machine of low armature reaction and high self-induction, as a

high-frequency unitooth alternator.

193. Graphically, the internal reactions of the alternating-

current generator can be represented as follows:

Let the impressed m.m.f., or field excitation, F
,
be repre-

sented by the vector OFo, in Fig. 139, chosen for convenience

as vertical axis. Let the armature current, /, be represented by
vector 01. This current, /, gives armature reaction FI = nl,
where n = number of effective turns of the armature, and is repre-
sented by the vector, OF 1} with the two quadrature components,

18
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OF'i, in line with the field m.m.f., OF and usually opposite

thereto and OF,", in quadrature with OF .

OFo combined with OFi gives the resultant m.m.f., OF, with

the quadrature_components, OF' = OFQ OF'i, and OF".

The m.m.f., OF, produces a magnetic flux, 0J>, and this gener-

ates an e.m.f., OE2 ,
in the armature circuit, 90 behind OF in

phase, the virtual generated e.m.f.

FIG. 139.

The armature self-induction consumes an e.m.f., Q# 3 ,
90

ahead of the current, thus, subtracted vectorially from OE2 ,

gives the actual generated e.m.f., OEi.

The armature resistance, r, consumes an e.m.f., OE*, in phase

with the current, which subtracts vectorially from the actual

generated e.m.f., and thus gives the terminal voltage, OE.

194. Analytically, these reactions are best calculated by the

symbolic method.
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Let the impressed m.m.f., or field-excitation, FQ ,
be chosen as

the imaginary axis, hence represented by
^o = + J/o (1)

Let

I = i\ jiz
= armature current. (2)

The m.m.f. of the armature then is

F l
= nl = n(ii -jit) (3)

where

n = number of effective armature turns,

and the resultant m.m.f. then is

F = Fo + F i
= j(/o

- ni t) + nil. (4)

If, then,

(P = magnetic permeance of the structure, that is, magnetic
flux divided by the ampere-turns m.m.f. producing it,

$
(P =

j,,
or, $ = (PF = j(P(/

-
nit) + (Pm'i. (5)

The e.m.f. generated by the magnetic flux & in the armature

is e 2
= 27r/n<f>10-

8
, (6)

where/ = frequency.

Denoting 2 irfn 10
~ 8

by a we have, (7)

2
= a 3> (8)

and since the generated e.m.f. is 90 behind the generating flux, in

symbolic expression,

(9)

hence, substituting (5) in (9),

niz) ja(?nii, (10)

the virtual generated e.m.f.

The e.m.f. consumed by the self-inductive reactance of the

armature circuit is,

E 3
= jxl =

jxii + xi z ; (11)

and therefore, the actual generated e.m.f.

Ei = E2
- E3

=
{a(P/o

-
(a(Pw + x)i2 }

-
jii(a(?n + x). (12)
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The e.m.f. consumed by the armature resistance, r, is

# 4
= rl = rii

-
jriz ;

hence, the terminal voltage,

E = E l
- E,

= {a&fo (a(?n + x)iz rii} j{ii(a(S>n + x) ri z }. (14)

195. It is

/o
= field m.m.f.; hence

3>o
=

(P/o
= magnetic flux, which would be produced by the

field excitation, / ,
if the magnetic permeance at this m.m.f., / ,

were the same, (P, as at the m.m.f., F that is, if the magnetic
characteristic would not bend between /o and F, due to mag-
netic saturation, or in other words, when neglecting saturation,

and therefore e = a(P/ (15) = e.m.f. generated in the armature

by the field excitation, when neglecting magnetic saturation, or

assuming a straight line saturation curve.

eo is called the "nominal generated e.m.f. of the machine."

ni = armature m.m.f.
; therefore,

(?ni = magnetic flux produced thereby, and,

a(?ni = e.m.f. generated in the armature by the magnetic flux of

armature reaction, hence,

a(9n = Xi

= effective reactance, representing the armature reaction,

and XQ = a(?n + x
f (16)

= synchronous reactance, that is, the effective reactance

representing the combined effect of armature self-induction and

armature reaction.

Substituting (15) and (16) in (14) gives,

E =
(g

- x iz
-

rii)
-

j(x Qii
- riz) (17)

It follows herefrom:

In an alternating-current generator, the combined effect of

armature reaction and self-induction can be represented by an

effective reactance, the synchronous reactance, XQ, which consists

of the two components:
x = x H- xi (18)

where,

x = true self-inductive reactance of the armature circuit.

x\ = a&n = effective reactance of armature reaction, (19)



ARMATURE REACTIONS OF ALTERNATORS 277

and the nominal generated e.m.f.,

e Q
= a(P/ ; (15)

where,

n number of armature turns, effective,

fo = field excitation, in ampere-turns,

a = 2 irfwlO- 8
. (7)

(P = magnetic permeance of the field structure at a magnetic
flux in the field-poles corresponding to the virtual generated

e.m.f., E2 .

The introduction of the term "
synchronous reactance," x

,

and "nominal generated e.m.f.," e
,

is hereby justified, when

dealing with the permanent condition of the electric circuit.

The case of the transient phenomena of momentary short-

circuit currents, etc., is discussed in a chapter on "Transient

Phenomena and Oscillations/' section I.

It must be understood that the "nominal generated e.m.f.,"

e
,
in an actual machine, in which the magnetic characteristic

bends due to the approach to magnetic saturation, is not the

voltage generated by the field excitation / at open-circuit, but

is the voltage which would be generated, if at excitation, / ,
the

$
magnetic permeance, (P = ^ were the same as at the actual flux

existing in the machine that is, if the magnetic characteristic

would continue in a straight line passing through the origin when

prolonged.

The equation (17) may also be written

E = eQ
- Z 7; (20)

where,

ZQ = r + jx = synchronous impedance of the alternator.

/ = ii jiz,

or, more generally

E = E - Z I, (22)

and so is the equation of a circuit, supplied by the e.m.f., E ,

with the current, /, over the impedance, ZQ, as has been discussed

in the chapter on resistance, inductive reactance and conden-

sive reactance.
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An alternator so is equivalent to an e.m.f., E ,
the nominal

generated e.m.f., supplying current over an impedance, Z
,
the

synchronous impedance.
196. In theoretical investigations of alternators, the syn-

chronous reactance, x
,
is usually assumed as constant, and has

been assumed so in the preceding.

In reality, however, this is not exactly, and frequently not

even approximately correct, but the synchronous reactance is

different in different positions of the armature with regard to the

field. Since the relative position of the armature to the field

varies with the armature current, and with the phase angle of

the armature current, the regulation curve of the alternator, and

other characteristic curves, when calculated under the assump-
tion of constant synchronous reactance, may differ considerably

from the observed curves, in machines in which the synchronous
reactance varies with the position of the armature.

The two components of the synchronous reactance are the self-

inductive reactance, and the effective reactance of armature

reaction. The self-inductive reactance represents the e.m.f.

generated in the armature by the local field produced in the

armature by the armature current. The magnetic reluctance

of the self-inductive field of the armature coil, however, is, in

general, different when this coil stands in front of a field-pole,

and when it stands midway between two field-poles, and the

self-inductive reactance so periodically varies, between two

extreme values, representing respectively the positions of the

armature coils in front of, and midway between the field-poles,

that is, pulsates with double frequency, between a value, x',

corresponding to the position in front, and a value, x", corre-

sponding to a position midway between the field-poles. Depend-
ing upon the structure of the machine, as the angle of the pole

arc, that is, the angle covered by the pole face, either x' or x"

may be the larger one.

The effective reactance of armature reaction, xi, corresponds
to the magnetic flux, which the armature would produce in the

field-circuit. With the armature coil facing the field-pole, that

is, in a nearly closed magnetic field-current, x\, therefore is

usually far greater than with the armature coil facing midway
between the field-poles, in a more or less open magnetic circuit.

Hence, Xi, also varies between two extreme values, x\ and Xi",

corresponding respectively to the position in line with, and in
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quadrature with, the field-poles. In this case, usually xi is

larger than #/'.

Since x\ = a(?n, where (P = magnetic permeance, (P varies

between (P', corresponding to the position of the armature coil

opposite the field-poles, and (P", corresponding to the position

of the armature coil midway between the field-poles. Usually

(9' is far larger.

This means that the two components of the resultant m.m.f.

F: Fi, in line with, and F" in quadrature with, the field-poles,

act upon magnetic circuits of very different permeance, (P' and

(P", and the components of magnetic flux, due to F' and F"

respectively, are

$>" = <s>"F".

The two components of magnetic flux,
<>' and <", therefore

are in general, not proportional to their respective m.m.fs. Ff and

F", and the resultant flux, <, accordingly is not in line with the

resultant m.m.f., F, but differs therefrom in direction, being

usually nearer to the center line of the field-poles. That is,

the resultant magnetic flux, <, is more nearly in line with the

impressed m.m.f. of field excitation, F
,
than the resultant

m.m.f., F, is or in other words the magnetic flux is shifted

by the armature reaction less than the resultant m.m.f. is shifted.

197. To consider, in the investigation of the armature reactions

of an alternator, the difference of the magnetic reluctance of the

structure in the different directions with regard to the field, that

is, the effect of the polar construction of the field, or the use of

definite polar projections in the magnetic field, the reactions

of the machine must be resolved into two components, one in

line and the other in quadrature with the center line of the field-

poles, or the direction of the impressed m.m.f. or field-excitation,

F*
Denoting then the components in line with the field-poles

or parallel with the field-excitation, FQ , by prime, as /', F', etc.,

and the components facing midway between the field-poles, or

in quadrature position with the field-excitation, FQ, by second,

as /", F", the diagram of the alternator reactions is modified

from that given in Fig. 139.

Choosing again, in Fig. 140, the impressed m.m.f. or field-

excitation, FQ, as vertical vector OFQ ,
the current, OI, consists
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of the component, 01'',
in line with F

,
or vertical, and OI" in

quadrature with F
,
or horizontal. The armature reaction,

OFi, gives the components, OFi and OFi", and the resultant

m.m.f. therefore consists of two components, OF' = OFQ

OF/, and OF" = OFi".

FIG. 140.

Let now

<?' = permeance of the field magnetic circuit; (23)

(P" = permeance of the magnetic circuit through the armature

in quadrature position to the field-poles; (24)

the components of the resultant magnetic flux are,

$' = 'p'
t represented by 0<i>'; and $" = <S>"F

n
', represented

by 0*",

and the Resultant magnetic flux, by_cpmbination of O& and

O$", is 0$, and is not in line with OF, but differs therefrom,

being usually nearer to OFo.
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The virtual generated e.m.f. is

E 2
= a$,

and represented by OE%, 90 behind 0<I>.

Let now

xf = self-inductive reactance of the armature when facing

the field-poles, and thus corresponding to the compo-

nent, 7', of the current, (25)

and

x" = self-inductive reactance of the armature when facing

midway between the field-poles, and thus corresponding
to the component, 7", of the current. (26)

Then

E'z = xT = e.m.f. consumed by the self-induction of the

current component, I',

and

E"z = x"I" e.m.f. consumed by the self-induction of the

current component, I".

E' 3 is represented byjvector OE'z, 90 ahead of 07', and E" 3 is

represented by vector OE"z, 90 ahead of 01". The resultant

e.m.f. of self-induction then is given by the combination of OE'z

and OE"z, as OE*. It is not 90 ahead of 07, but either more

or less. In the former case, the self-induction consumes power,
in the latter case, it produces power. That is, in such an arma-

ture revolving in the structure of non-uniform reluctance, the

e.m.f. of self-induction is not wattless, but may represent con-

sumption, or production of power, as "reaction machine." (See

"Calculation of Electrical Apparatus.")

__Subtracting vectorially OEs from the virtual generated e.m.f.

OE%, gives the actual generated e.m.f., OEi, and subtracting
therefrom the e.m.f. consumed by the armature resistance, OE*,
in phase with the current, 07, gives the terminal voltage, OE.

198. Here the diagram has been constructed graphically, by
starting with the field-excitation, Fo, the armature current, 7,

and the phase angle between the armature current, 7, and the

field-excitation, F that is, the angle between the position in

which the armature current reaches its maximum, and the direc-

tion of the field-poles. This_angle, however, is_unknown. Usu-

ally the terminal voltage, OE, the current, 07, and the angle,
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EOI, between current and terminal voltage are given. From
these latter quantities, however, the diagram cannot be con-

structed, since the position of the field-excitation, FO, and so the

directions, in which the electric quantities have to be resolved

into components, are still unknown, when starting the construc-

tion of the diagram.

That is, as usually, the graphical representation affords an

insight into the inner relations

of the phenomena, but not a

method for their numerical cal-

culations, and for the latter

purpose, the symbolic method
is required.

Let

EQ
= nominal generated

e.m.f., or e.m.f. corresponding
to the field-excitation, FQ, on a

straight line continuation of the

magnetic characteristic from the
* actual value of the field onward

as shown by Fig. 141.

The impressed m.m.f., or field excitation, is then given by

JF . (27)

Let

/ = I' + I" = armature current, (28)

where the component, 7', is in line, the component, I", in quad-

rature with: jFQ .

If n = number of effective armature turns, the m.m.f. of the

armature current, /, or the armature reaction, then is

F, = nl, (29)

with its components, in phase and in quadrature with the field;

Fi" = w7";

and the components of the resultant m.m.f. then are

F" =
rc7";

(30)

(31)
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and the resultant

F =
JF<> + nl' + nl". (32)

The components of the magnetic flux, in line and in quadrature
with jF ,

then are

= (P''Fo + n/O; (33)

$" = <p"F"

=
<P"'n7"; (34)

hence, the resultant magnetic flux

$ = $' -f $"

=
(P'CjFo + nl') + (P^nJ" (35)

The e.m.f. generated by this magnetic flux, $, or the virtual

generated e.m.f. is

= -
a(?'(FQ + jnl

1

) + - ja&"nl". (36)

The e.m.f. consumed by the self-inductive reactance, x', of

the current component, /', is,

E' 3
=

jx'I', (37)

the e.m.f. consumed by the self-inductive reactance, x", of the

current component, /", is

E" 9
= jx"I", (38)

and the total e.m.f. consumed by self-induction thus is

#3
=

j(x'I' + x"I"); (39)

hence, the actual generated e.m.f.

EI = EZ EZ

= a(?'F -
jl'(a(?'n + x')

-
jl"(a(?"n + x"). (40)

The e.m.f. consumed by the resistance, r, is

E 4
= rl

= rl' + rl"; (41)
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hence, the terminal voltage of the machine is

E == E\ E\

= a(P'F -I'(r+ j(a(S>'n + *') }

- I" (r + j (a(P"n + x") }. (42)

In this equation of the terminal voltage,

x' = a(P'w -f x',

x"Q
= a(P"n + x", \ (43)

are effective reactances, corresponding to the two quadrature

positions; that is

X'Q = synchronous reactance corresponding to the position

of the armature circuit parallel to the field circuit
; (44a)

x"o = synchronous reactance corresponding to the position of

the armature circuit in quadrature with the field circuit; (446)

a(S>'F is the e.m.f. which would be generated by the field

excitation, F ,
with the permeance, <?', in the direction in which

the field excitation, F , acts, that is

EQ = aCP'Fo = nominal generated e.m.f. (45)

and it is: terminal voltage,

E = Eo - l'(r + jz'o)
- l"(r + jx" ). (46)

That is, even with an heteroform structure, as a machine

with definite polar projections, the armature reaction and

armature self-induction can be combined by the introduction

of the terms "nominal generated e.m.f." and "synchronous

reactance," as defined above, except that in this case the syn-
chronous reactance, XQ, has two different values, X'Q and x"o,

corresponding respectively to the two main axes of the magnetic

structure, in line and in quadrature with the field-poles.

199. In the equation (46), E, E
,

I' and /" are complex

quantities, and
I" is in phase with EQ,

I' is in quadrature behind E
,
and so behind I":

hence, /' can be represented by

/' = -
jtl", (47)
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where t = ratio of numerical values of /" and /', that is

t = = tan B (48)

and

8= angle of lag of current, /, behind nominal generated

e.m.f., EQ . Then

i = r + /" = /"(i -jt) 9

or

r and
-jt

- -
r i+#

Substituting these values (50) in equation (46) gives

(49)

(50)

In this equation, EQ leads / by angle 6.

Hence, choosing the current, /, as zero vector,

7 =
i, (52)

the e.m.f., E ,
which leads i by angle, 6, can be represented by

EQ = 6 (cos -f- j sin 0),

or, since by equation (48),

(53)

Oil! I/
-

, CfcUU UUS 17 -
y
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substituting (57) in (56) and transposing,

eo Vl+t* ~ (ei+je s) (1 -jt) -i { (r+jx" )
-

jt (r+jx'o) }
=

0, (60)

or, expanded,

{e \/lJrf-ei-te2 -i(r+tx' )}+j{tei-ei+i(tr-x" )} =0. (61)

As the left side is a complex quantity, and equals zero, the real

part as well as the imaginary part must be zero, and equation (61)

so resolves into the two equations

e<> Vl + t
2 -

e,
- te2 -i(r + te' )

=
0, (62)

tei
- e2 + i (tr

- x" )
= 0. (63)

From equation (63) follows

= e, -Ks'V'.
( ^

ei + n

Substituting (64) in (62), and expanding, gives

* = ( ' +
?*+ nvtff+y*' (65)

(66)

That is, if

X'Q synchronous reactance in the direction of the field-

excitation,

x" Q
= synchronous reactance in quadrature with the

field excitation,

r = armature resistance,

i = armature current,

E = e\ -+- je2
= e(cos 6* -f- j sin 6')

= terminal voltage,

that is,

tan 0' = = angle of lag of current i behind terminal

voltage, e,

the nominal generated e.m.f. of the machine is

(e, + n)
J + (e2 + zV) (e, + z'V)

(67)

(e cos 6' + ri)
2 + (e sin 6' -f x' i) (e sin 6' + x" i)

\/(e cos 6' + ri)
2 + (e sin ^', + x" i)

2
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and the field excitation, / , required to give terminal voltage, 6,

at current, i, and angle of lag, 0', is, therefore

e e 10 8
^

Jo
a(P'n~27rfn*(S>'

and the position angle, 0, between the field-excitation, / ,
and

the armature current, i, that is, between the direction of the

field-poles and the direction in which the armature current

reaches its maximum, is

e 2 + x"Qi e sin 0' + x"*i
tan 6 t

-
: r = --

^7 :

-
(70)

ei + n e cos 6' + n

200. At non-inductive load,

61 = e and e 2
= (71)

from (68),

_ (e + r,)2 + XoVV2
'

V(e + ri) + *Vi
If

x' = x" = x
, (73)

that is, the synchronous reactance of the machine is constant in all

positions of the armature, or in other words, the magnetic per-

meance, (P, and the self-inductive reactance, x$ do not vary with

the position of the armature in the field, equation (68) assumes

the form

eo = V(ei + n)
2 + (e* + w) 2

, (74)

and this is the absolute value of the equation (22)

o
= E + Z I, (22)

derived in 195 for the case of uniform synchronous impedance.

Substituting in (22),

/ =
i, and E = e\ + je2 ,

and expanding, gives

Eo =
(ei + ,762) + i(r + jxo)

=
(ei + ri) + j(e2 + xQi) ;

thus, the absolute value,

(74)



288 ALTERNATING-CURRENT PHENOMENA

201. At short-circuit, and approximately, near short-circuit,

d = and e 2
=

0, (75)

equation (68) assumes the form

o .

(76)v T- -r XQ
-

or the short-circuit current,

Since x' Q and z"o usually are large, compared with r, r can be

neglected in equation (77), and (77) so assumes the form

to = %-, (78)
X o

that is, the short-circuit current of an alternator,

e=
y7'x o

depends only upon the synchronous reactance of the armature

in the direction of the field-excitation, x'o, but not upon the syn-

chronous reactance of the armature in quadrature position to the

field-excitation, X"Q.

Near open-circuit, that is, in the range where the machine

regulates approximately for constant potential, and ix and espe-

cially ir are small compared with e, we have, for non-inductive

load, from equation (72),

(e + ri)*

or, approximately,

hence, expanded by the binomial series,
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and, dropping terms of higher order,

. x'oX "i2 x "H2

e = e -f- n + - ---~ >

6 A 6

or

. oo
6 = 6 + n H--- " ~

(79)

For x'o = "o = x
,
this equation (79) assumes the usual form,

e, = e + ri + ~ -
(80)Z 6

In the range near open-circuit, for non-inductive load, the

regulation of the machine accordingly depends not upon the

synchronous reactance, z'o, nor upon z"
,
but upon the equivalent

synchronous reactance,

x'" = Vx" (2x' -x" ). (81)

That is, in an alternator with non-uniform synchronous re-

actance, the short-circuit current and the regulation of the

machine near short-circuit, depend upon the value of the syn-
chronous reactance, corresponding to the position of the arma-
ture coils parallel, or coaxial with the field-poles, z'o, while the

regulation of the machine for non-inductive load, in the range
where the machine tends to regulate for approximately constant

potential, that is, near open-circuit, depends upon the value of

the synchronous reactance, X"'Q = VV'o(2x' x"o), where x'

and X"Q are the two quadrature components of the synchronous
reactance.

That is, the regulation of such an alternator of variable syn-
chronous reactance cannot be calculated from open-circuit

test and short-circuit test, or from the magnetic characteristic

of the machine at open-circuit, or nominal generated e.m.f., and

the synchronous reactance, as given by the machine at short-

circuit.

For instance, if

x' = 10 and z" =
4,

the effective synchronous reactance near short-circuit,

z' = 10;

and the effective synchronous reactance near open-circuit,

19
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The regulation for non-inductive load thus is better than

corresponds to the short-circuit impedance.
From equation (68), by solving for the terminal voltage, e,

the variation of the terminal voltage, e, with change of load, i,

at constant field-excitation, / ,
and so constant nominal gener-

ated e.m.f., e
,
that is, the regulation curve of the machine, is

calculated.

For instance, for non-inductive load, or 0' = 0, equation (68),

solved for e, gives

e = - s'oz'V.H- e,
~ + x "*i* (x" Q

-
x'*)*

- ri. (82)

202. As illustrations are shown, in Fig. 142, the regulation

curves, with the terminal voltage, e, as ordinates, and the cur-

rent, i, as abscissas, at constant field-excitation, that is, constant

nominal generated e.m.f., e
>
for the constants

e = 2500 volts; x' = 10 ohms;
r 1 ohm; x" Q

= 4 ohms;
for non-inductive load E =

e, (Curve I.)

and for inductive load of 60 per cent, power-factor, E = e (0 . 6 +
0.8 j.) (Curve II.)

For comparison are plotted in the same figure, in dotted

lines, the regulation curves for constant synchronous reactance

x = 10 ohms,

that is, for the same open-circuit voltage and same short-circuit

current.

As seen from Fig. 142, the difference between the two regula-

tion curves, for variable and for constant synchronous reactance,

is quite considerable at non-inductive load, but practically negli-

gible at highly inductive load. This is to be expected, since at

inductive load the armature current reaches its maximum nearly

in opposition to the field-poles, and in this direction the syn-

chronous reactance is the same, X'Q, as at short-circuit.

In the preceding discussion of the alternator with variable syn-

chronous reactance, e.m.f. and current are assumed as sine

waves. The periodic variation of reactance produces, however,

a distortion of wave-shape, consisting mainly of a third harmonic

which superimposes on the fundamental, as discussed in Chapter
XXV. The preceding, therefore, applies to the equivalent
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sine wave, which represents approximately the actual distorted

wave.

As the intensity, and the phase difference between the third

harmonic and the fundamental changes with the load, in such
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CHAPTER XXIII

SYNCHRONIZING ALTERNATORS

203. All alternators, when brought to synchronism with each

other, operate in parallel more or less satisfactorily. This is due

to the reversibility of the alternating-current machine; that is,

its ability to operate as synchronous motor. In consequence

thereof, if the driving power of one of several parallel-operating

generators is withdrawn, this generator will keep revolving in

synchronism as a synchronous motor; and the power with which

it tends to remain in synchronism is the maximum power which

it can furnish as synchronous motor under the conditions of

running.
204. The principal and foremost condition of parallel opera-

tion of alternators is equality of frequency; that is, the trans-

mission of power from the prime movers to the alternators must
be such as to allow them to run at the same frequency without

slippage or excessive strains on the belts or transmission devices.

Rigid mechanical connection of the alternators cannot be con-

sidered as synchronizing, since it allows no flexibility or phase

adjustment between the alternators, but makes them essentially

one machine. If connected in parallel, a difference in the field-

excitation, and thus the generated e.m.f. of the machines, may
cause large cross-current, since it cannot be taken care of by

phase adjustment of the machines.

Thus rigid mechanical connection is not desirable for parallel

operation of alternators.

205. The second important condition of parallel operation is

uniformity of speed; that is, constancy of frequency. If, for

instance, two alternators are driven by independent single-

cylinder engines, and the cranks of the engines happen to be

crossed, the one engine will pull, while the other is near the dead-

point, and conversely. Consequently, alternately the one alter-

nator will tend to speed up and the other slow down, then the

other speed up and the first slow down. This effect, if not taken

care of by fly-wheel capacity, causes a "hunting" or surging
292
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action
;
that is, a fluctuation of the voltage with the period of the

engine revolution, due to the alternating transfer of the load

from one engine to the other, which may even become so excessive

as to throw the machines out of step, especially when by an ap-

proximate coincidence of the period of engine impulses (or a

multiple thereof), with the natural period of oscillation of the

revolving structure, the effect is made cumulative. This diffi-

culty as a rule does not exist with turbine or water-wheel driving,

but is specially severe with gas-engine drive, and special pre-

cautions are then often taken, by the use of a short-circuited

squirrel cage winding in the field pole faces.

206. In synchronizing alternators, we have to distinguish

the phenomena taking place when throwing the machines in

parallel or out of parallel, and the phenomena when running in

synchronism.
When connecting alternators in parallel, they are first brought

approximately to the same frequency and same voltage; and then,

at the moment of approximate equality of phase, as shown by a

phase-lamp or other device, they are thrown in parallel.

Equality of voltage is less important with moderate size alter-

nators than equality of frequency, and perfect equality of phase is

usually of importance only in avoiding an instantaneous flickering

of the light of lamps connected to the system. When two alter-

nators are thrown together, currents exist between the machines,
which accelerate the one and retard the other machine until

equal frequency and proper phase relation are reached.

With modern ironclad alternators, this interchange of mechan-

ical power is usually, even without very careful adjustment before

synchronizing, sufficiently limited not to endanger the machines

mechanically, since the cross-currents, and thus the interchange
of power, are limited by self-induction and armature reaction.

In machines of very low armature-reaction, that is, machines

of "very good constant-potential regulation," much greater care

has to be exerted in the adjustment to equality of frequency,

voltage, and phase, or the interchange of current may become
so large as to destroy the machine by the mechanical shock; and

sometimes the machines are so sensitive in this respect that it

is. difficult to operate them in parallel. The same applies in

getting out of step.

207. When running in synchronism, nearly all types of ma-
chines will operate satisfactorily; a medium amount of armature
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reaction is preferable, however, such as is given by modern alter-

natorsnot too high to reduce the synchronizing power too

much, nor too low to make the machine unsafe in case of accident,

such as falling out of step, etc.

If the armature reaction is very low, an accident such as a

short-circuit, falling out of step, opening of the field circuit, etc.

may destroy the machine. If the armature reaction is very

high, the driving power has to be adjusted very carefully to

constancy, since the synchronizing power of the alternators is too

weak to hold them in step and carry them over irregularities of

the driving-power.

208. Series operation of alternators is possible only by rigid

mechanical connection, or by some means whereby the machines,
with regard to their synchronizing power, act essentially in par-

FIG. 143.

allel; as, for instance, by the arrangement shown in Fig. 143,

where the two alternators, AI, A z ,
are connected in series, but

interlinked by the two coils of a transformer, Ty
of which the one

is connected across the terminals of one alternator and the other

across the terminals of the other alternator in such a way that,

when operating in series, the coils of the transformer will be with-

out current. In this case, by interchange of power through the

transformers, the series connection will be maintained stable.

209. In two parallel operating alternators, as shown in Fig.

144, let the voltage at the common busbars be assumed as zero

line, or real axis of coordinates of the complex representation;

and let

e = difference of potential at the common busbars of the

two alternators;
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Z = r + jx = impedance of the external circuit;

Y =
g jb = admittance of the external circuit;

hence, the current in the external circuit is

e

Let

r + jx
= e(g

-

generated e.m.f. ofEi = ei + je\ = ai(cos 0i + j sin Oi)

first machine;
E2

= e 2 + je'z
= a2 (cos 62 + j sin 2 )

= generated e.m.f. of

second machine;
/i = ii ji\ = current of the first machine;

1 2
= it ji

f

2
= current of the second machine;

Zi = TI + jxi = internal impedance, and FI =
g\ jbi

= inter-

nal admittance of the first machine;
Zz

= r2 + jx 2
= internal impedance, and F2

= gz jb 2
= inter-

nal admittance of the second machine.

Then,

FIG. 144.

+ e'S = a!
2

;

= a 2
2

;

i
= e + I\Zi, or d + je'i

=
(e + iiri + i\Xi) +

*
= e + IzZ2 ,

or e2 -f je'z
=

(e + izrz + ^2^2

= /i + ^2, or e^
-

jeb =
(*i + 2 )

-
j(i'

This gives the equations:

61 = e + i>i + i'\Xi\

ez
= e + 2>2 + t^^



296 ALTERNA TING-CURRENT PHENOMENA

e'i

= i2x2 i' 2r2
',

eg
= ii + iz'j

eb = i\ + i'2

or eight equations with nine variables, e\, e'i, e2 ,
e' 2 , ii, i'i, i2 ,

i' 2 ,
e.

Combining these equations by twos,

eiri + e'&i = eri + itfi
2

;

e2r2 + e' 2x2
= er2 + i2z2

2
;

substituting in

ii + iz = eg,

we have

ei^i + e'ibi + e2^2 + e' 2&2 = e(gi + ^2 -f g);

and analogously,

e(bi + 6 2 + 6) :

dividing,

e26 2
-

e'lgfi
-

e'2^2'

substituting

g = y cos a d = ai cos 0i e 2
= a2 cos 2

6 =
i/ sin a e'\ = ai sin 61 e' 2

= a 2 sin 2

gives

+ ^1 + ^2 _ aij/i cos (i 0i) + a2y2 cos ( 2

6 + 61 + 62 aiyi sin (a\ 61) + azy2 sin (a2 2)

as the equation between the phase displacement angles, 0i and 2 ,

in parallel operation.

The power supplied to the external circuit is,

P = e 2
g,

of which that supplied by the first machine is,

PI eii;

by the second machine,

p2
= eiz .

The total electrical power of both machines is,

P = P l + P2 ,



SYNCHRONIZING ALTERNATORS 297

of which that of the first machine is,

P ' */

and that of the second machine,

The difference of output of the two machines is,

AP T= Pi - P* = e (ii
- i2) ;

denoting
/} |

n n n
VI ~[~ "2 _ "l C7 2 _
~T~ ~T~

may be called the synchronizing power of the machines,

or the power which is transferred from one machine to the other

by a change of the relative phase angle.

210. SPECIAL CASE. Two equal alternators of equal excitation.

a\ = a 2
=

a,

ZF7 f7
1

^~ A/ 2 =~= *^Q*

Substituting this in the eight initial equations, these assume

the form,

ei- = e + iir + I'M,

62 = 6 + ItfQ + 1 2^0

eg = ii + iz ,

eb = K + ,'',,

ei
2 + e/ 2 = 6 2

2 + 6 2
' 2 = a2

.

Combining these equations by twos,

61 + 62 = 2 e + e (rQg + xQb),

e'i + e' 2 = e (xQg rQb) ;

substituting

61 = a cos 0i,

e'i = a sin 0i,

62 = a cos 02,

e' 2 = a sin 2 ,

we have

a (cos 0i + cos 2 )
= e (2 + r g + z

a (sin 0i + sin 2)
= e (xQg

- r 6) ;
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expanding and substituting
6

e = - 02

5 =
2

gives
-

,a cos e cos 5 = e ( 1 H
/ -

,

r g +Xo\= e ( 1 H---=--
j

a sin e cos 5 = e
x g r 6.

hence

That is,

and

or,

tan = = constant.

1 + 6 2
= constant;

a cos 5
e = - rQb\ 2

at no-phase displacement between the alternators, or,

we have

+ a?ob.
2 - r 6\ 2.

From the eight initial equations we get, by combination,

eirQ + e'lXo = e rQ

e2r + e' 2xQ
= eQrQ

subtracted and expanded,

TO (ei ez) + xQ (e'i c'j) .

or, since

e x e2 = a (cos 0i cos 2 )
= 2 a sin e sin 5,

'j e'z = a (sin 0i sin 2)
= 2 a cos c sin 5,
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we have
2 a sin 8 .

ii ?2 = 2 \ XQ cos e
~ r sm c

l

()

= 2 ai/o sin d sin (a c),

where
X

tan a =
7*0

The difference of output of the two alternators is

AP = Pi -P2
= e(ii

- * 2);

hence, substituting,
2ae sin 8 , .

}AP = -

* \XQ cos e r sm ej ;

Zo

substituting,
a cos 8

e =
/A , rpflf + x 6\ 2

/xo^f -rp6\ 2

VI1 ~2 /

"

V 2 /

sm e =

VI

cos e =

+ r*g_x^ + (M_!^
we have,

2a2 sin 6 cos 8
j

x
(l + ^r~~) ro

AP =

expanding,

a 2 sin 2 5

or

a2 sin 2 6

AP =
2/o

2

A5
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Hence, the transfer of power between the alternators, AP, is a

maximum, if 6 = 45; or 0i 2
= 90; that is, when the alter-

nators are in quadrature.

The synchronizing power, ,
is a maximum if 6 =0; that is,

the alternators are in phase with each other.

211. As an instance, curves may be plotted for,

a = 2500,

Z = rQ + jx = 1 + 10 j] or F =
go
-

jb = 0.01 - 0.1 j,

f\ n

with the angle, 5 = ~
,
as abscissas, giving

40

the value of terminal voltage, e\

the value of current in the external circuit, ? = ey,

the value of interchange of current between the alternators

i\ iz]

the value of interchange of power between the alternators, AP
= Pi - P2 ;

the value of synchronizing power,

For the condition of external circuit,

=
0, 6 =

0, y =
0,

0.05, 0, 0.05,

0.08, 0, 0.08,

0.03, +0.04, 0.05,

0.03, -0.04, 0.05.



CHAPTER XXIV

SYNCHRONOUS MOTOR

212. In the chapter on synchronizing alternators we have seen

that when an alternator running in synchronism is connected with

a system of given voltage, the work done by the alternator can be

either positive or negative. In the latter case the alternator

consumes electrical, and consequently produces mechanical,

power; that is, runs as a synchronous motor, so that the investi-

gation of the synchronous motor is already contained essentially

in the equations of parallel-running alternators.

Since in the foregoing we have made use mostly of the sym-
bolic method, we may in the following, as an example of the

graphical method, treat the action of the synchronous motor

graphically.

Let an alternator of the e.m.f., Ei, be connected as synchron-
ous motor with a supply circuit of e.m.f., EQ, by a circuit of the

impedance, Z.

If EQ is the e.m.f. impressed upon the motor terminals, Z is

the impedance of the motor of generated e.m.f., EI. If EQ is the

e.m.f. at the generator terminals, Z is the impedance of motor and

line, including transformers and other intermediate apparatus.
If EQ is the generated e.m.f. of the generator, Z is the sum of the

impedances of motor, line, and generator, and thus we have the

problem, generator of generated e.m.f., EQ, and motor of generated

e.m.f., EI; or, more general, two alternators of generated e.m.fs.,

EQ, EI, connected together into a circuit of total impedance, Z.

Since in this case several e.m.fs. are acting in circuit with the

same current, it is convenient to use the current, I, as zero line

01 of the polar diagram. (Fig. 145.)

If / = i = current, and Z = impedance, r = effective resist-

ance, x = effective reactance, and z = V>2 + x z = absolute

value of impedance, then the e.m.f. consumed by the resistance

is EH ri, and is in phase with the current; hence represented

by vector OEu', and the e.m.f. consumed by the reactance is

Ez =
xi, and 90 ahead of the current

;
hence the e.m.f. consumed

301
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by the impedance is E = \/(^n)
2 + (Ez)

2
,
or =

and ahead of the current by the angle 5, where tan 5 = -.

We have now acting in circuit the e.m.fs., E, EI, E ;
or EI and

E are components of EQ, that is, E is the diagonal of a parallelo-

gram, with EI and E as sides.

Since the e.m.fs. EI, E
, E, are represented in the diagram,

Fig. 145, by the vectors OE 1}
OE

, OE, to get the parallelogram
of EQ, Eif E, we draw arcs of circles around with EQ ,

and around

E with EI. Their point of intersection gives the impressed e.m.f.,

OEp = EQ, and completing the parallelogram, OEEQEi, we get,

OEi = Ei f
the generated e.m.f. of the motor.

< IOEo is the difference of phase between current and impressed

e.m.f., or generated e.m.f. of the generator.

< IOEi is the difference of phase between current and generated
e.m.f. of the motor.

And the power is the current, i, times the projection of the e.m.f.

upon the current, or the zero line, 01.

Hence, dropping perpendiculars, EQEQ
l and EiEi 1

,
from E and

EI upon 01, it is

Po = i X OEo 1 = power supplied by generator e.m.f. of gen-

erator;

PI = 2 X OEi 1 = electric power transformed into mechanical

power by the motor;
p == { x OEu = power consumed in the circuit by effective

resistance.

Obviously P = Pi + P.

Since the circles drawn with EQ and EI around and E, re-

spectively, intersect twice, two diagrams exist. In general, in

one of these diagrams shown in Fig. 145 in full lines, current

and e.m.f. are in the same direction, representing mechanical

work done by the rnachine as motor. In the other, shown in

dotted lines, current and e.m.f. are in opposite direction, repre-

senting mechanical work consumed by the machine as generator.

Under certain conditions, however, EQ is in the same, E\ in

opposite direction, with the current; that is, both machines are

generators.

213. It is seen that in these diagrams the e.m.fs. are considered

from the point of view of the motor; that is, work done as syn-

chronous motor is considered as positive, work done as generator
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is negative. In the chapter on synchronizing generators we
took the opposite view, from the generator side.

In a single unit-power transmission, that is, one generator

supplying one synchronous motor over a line, the e.m.f. con-

sumed by the impedance, E = OE, Figs. 146 to 148, consists

three components; the e.m.f., OE% 1

E%, consumed by the im-

pedance of the motor, the e.m.f., Ez^Es
1 = E$ consumed by the

impedance of the line, and the e.m.f., E^E = E*, consumed by

FIG. 145.

the impedance of the generator. Hence, dividing the opposite
side of the parallelogram, EiEo, in the same way, we have: OEi
E\ generated e.m.f. of the motor, OEz = E% = e.m.f. at motor
terminals or at end of line, OE$ = Es

= e.m.f. at generator

terminals, or at beginning of line. OEQ = EQ
= generated e.m.f.

of generator.

The phase relation of the current with the e.m.fs., Ei,Eo t
de-

pends upon the current strength and the e.m.fs., EI and EQ.

214. Figs. 146 to 148 show several such diagrams for different

values of EI, but the same value of I and EQ . The motor diagram
being given in drawn line, the generator diagram in dotted line.

As seen, for small values of EI the potential drops in the alter-

nator and in the line. For the value of EI = EQ the potential
rises in the generator, drops in the line, and rises again in the
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FIG. 146.

FIG. 147.
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FIG. 148.

6,

FIG. 149.

20
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motor. For larger values of EI, the potential rises in the alter-

nator as well as in the line, so that the highest potential is the

generated e.m.f. of the motor, the lowest potential the generated
e.m.f. of the generator.

It is of interest now to investigate how the values of these

quantities change with a change of the constants.

215. A. Constant impressed e.m.f., EQ, constant-current strength

I =
i, variable motor excitation, E\. (Fig. 149.)

If the current is constant, =
i; OE, the e.m.f. consumed by

the impedance, and therefore point, Ej are constant. Since the

intensity, but not the phase of EQ is constant, EQ lies on a circle

e with EQ as radius. From the parallelogram, OEEoEi follows,

since EiEQ parallel and = OE, that E\ lies on a circle, ei, con-

gruent to the circle, eQ ,
but with Ei, the image of E, as center;

OEi = OE.

We can construct now the variation of the diagram with the va-

riation of Ei', in the parallelogram, OEE Eij 0, and E are fixed,

and EQ and EI move on the circles, e and e\, so that E Ei is

parallel to OE.

The smallest value of EI consistent with current strength, I, is

Oli = Ei, 01 = EQ. In this case the power of the motor is

Oli
1 X /, hence already considerable. ^Increasing EI to 02i, 03i,

etc., the impressed e.m.fs. move to 02, 03, etc., the power is I X
021

1

,
I X OSi

1

, etc., increases first, reaches the maximum at the

point 3i, 3, the most extreme point at the right, with the im-

pressed e.m.f. in phase with the current, and then decreases

again, while the generated e.m.f. of the motor, E\, increases and

becomes = EQ at 4i, 4. At 5i, 5, the power becomes zero, and

further on negative; that is, the motor has changed to a generator,

and produces electrical energy, while the impressed e.m.f., e
,

still furnishes electrical energy that is, both machines as gen-

erators feed into the line, until at 61, 6, the power of the impressed

e.m.f., EQ, becomes zero, and further on energy begins to flow

back; that is, the motor is changed to a generator and the genera-

tor to a motor, and we are on the generator side of the diagram.

At 7i, 7, the maximum value of EI, consistent with the current,

/, has been reached, and passing still further the e.m.f., E\ de-

creases again, while the power still increases up to the maximum
at 81, 8, and then decreases again, but still E\ remaining generator,

EQ motor, until at Hi, 11, the power of EQ becomes zero; that is,

EQ changes again to a generator, and both machines are generators,
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up to 12i, 12, where the power of EI is zero, E\, changes from

generator to motor, and we come again to the motor side of the

diagram, and the power of the motor increases while E\ still

decreases, until li, 1, is reached.

Hence, there are two regions, for very large EI from 5 to 6 and

for very small EI from 11 to 12, where both machines are genera-

tors; otherwise the one is generator, the other motor.

For small values of EI the current is lagging, begins, however,
at 2 to lead the generated e.m.f. of the motor, EI, at 3 the gener-

ated e.m.f. of the generator, EQ.

It is of interest to note that at the smallest possible value of

EI, li, the power is already considerable. Hence, the motor

can run under these conditions only at a certain load. If this

load is thrown off, the motor cannot run with the same current,

but the current must increase. We have here the curious con-

dition that loading the motor reduces, unloading increases, the

current within the range between 1 and 12.

The condition of maximum output is 3, current in phase with

impressed e.m.f. Since at constant current the loss is constant,

this is at the same time the condition of maximum efficiency; no

displacement of phase of the impressed e.m.f., or self-induction

of the circuit compensated by the effect of the lead of the motor

current. This condition of maximum efficiency of a circuit we
have found already in Chapter XI.

216. B. EQ and EI constant, I variable.

Obviously EQ lies again on the circle e with EQ as radius and

as center.

E lies on a straight line, e, passing through the origin.

Since in the parallelogram, OEE Ei, EE Q
= EI, we derive EQ

by laying a line, EEo = EI, from any point, E, in the circle, eQ ,

and complete the parallelogram.

All these lines, EEo, envelop a certain curve, ei, which can be

considered as the characteristic curve of this problem, just as

circle, ei, in the former problem.
These curves are drawn in Figs. 150, 151, 152, for the three

cases: 1st, Ei = EQ ', 2d, Ei<E ; 3d, Ei>EQ .

In the first case, EI = EQ (Fig. 150), we see that at very small

current, that is very small OE, the current, I, leads the impressed

e.m.f., EQ, by an angle, E 1
QOI =

. This lead decreases with

increasing current, becomes zero, and afterward for larger cur-

rent, the current lags. Taking now any pair of corresponding
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points, E, EQ, and producing EE untiHt intersects e i} in

have < E&E = 90, #1 = E0) thus: OEi = ## = OF =
we

FIG. 150.

FIG. 151.

that is, EEi = 2 E . That means the characteristic curve, d, is

the envelope of lines EEi, of constant lengths, 2 #o, sliding between

the legs of the right angle, E 1OE'} hence, it is the sextic hypocy-
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cloid osculating circle, Q, which has the general equation, with

e, 6i as axes of coordinates,

In the next case, EI < EQ (Fig. 151), we see first, that the

current can never become zero like in the first case, EI = EQ,

but has a minimum value corresponding to the minimum value

r TTFr/ T/ -^0 "! i i Tit EQ EI
of OE : 1 1

=-
,
and a maximum value: I i

= ---
2 z

Furthermore, the current may never lead the impressed e.m.f.,

EQ, but always lags. The minimum lag is at the point, H. The

locus, 61, as envelope of the lines, EE ,
is a finite sextic curve,

shown in Fig. 151.

FIG. 152.

If EI < EQ, at small EQ EI, H can be below the zero line,

and a range of leading current exists between two ranges of lag-

ging currents.

In the case, E\ > EQ (Fig. 152), the current cannot equal zero

either, but begins at a finite value, I\, corresponding to the mini-
pi -pi

mum value of OE, lf
\

- -At this value, however, the

alternator, EI, is still generator and changes to a motor, its power

passing through zero, at the point corresponding to the vertical

tangent, upon e\, with a very large lead of the impressed e.m.f.

against the current. At H the lead changes to lag.
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The minimum and maximum values of current in the three

conditions are given by:

Maximum
2E

Minimum

1st. 7 =
0,

EQ
2d. / =

3d. I =

z

El EQ

I =

I =

I =

z

E Q +

Since the current in the line at EI = O, that is, when the motor
Tjl

stands still, is 7 =
,
we see that in such a synchronous motor-

plant, when running at synchronism, the current can rise far be-

yond the value it has at standstill of the motor, to twice this

value at 1, somewhat less at 2, but more at 3.

FIG. 153.

217. C. EQ = constantj EI varied so that the efficiency is a

maximum for all currents. (Fig. 153.)

Since we have seen that the output at a given current strength,

that is, a given loss, is a maximum, and therefore the efficiency

a maximum, when the current is in phase with the generated

e.m.f., EQ) of the generator, we have as the locus of EQ the point,

EQ (Fig. 153), and when E with increasing current varies on e,

E\ must vary on the straight line, e\, parallel to e.
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Hence, at no-load or zero current, EI = EQ, decreases with

increasing load, reaches a minimum at OEi 1

perpendicular to e\,

and then increases again, reaches once more EI = EQ at Ei2
,
and

then increases beyond EQ. The current is always ahead of the

generated e.m.f., EI, of the motor, and by its lead compensates
for the self-induction of the system, making the total circuit non-

inductive.

The power is a maximumjat Ei 3
,
where OEi4 = Ei*E = 0.5 X

OEo, and is then = I X Since OES = Ir = ~, I = ~
j & 2i T

E 2

and P = ~-, hence = the maximum power which, over a non-

inductive line of resistance r can be transmitted, at 50 per cent.

efficiency, into a non-inductive circuit.

In this case,

z EQ

In general, it is, taken from the diagram, at the condition of

maximum efficiency,

Comparing these results with those in Chapter XI on Induct-

ive and Condensive Reactance, we see that the condition of

maximum efficiency of the synchronous motor system is the same

as in a system containing resistance and condensive reactance,

fed over an inductive line, the lead of the current against the

generated e.m.f., EI, here acting in the same way as the con-

denser capacity in Chapter XI.

218. D. EQ = constant; PI = constant.

If the power of a synchronous motor remains constant, we

have (Fig. 154) I X OEi 1 =
constant, or, since OE 1 =

Ir, I =

and OE 1 X OES = OE 1 X E lE l = constant.

Hence we get the diagram for any value of the current, I, at

constant power, PI, by making OE 1 = Ir, E 1EQ
1 =

~j erecting

in EQ
l a perpendicular, which gives two points of intersection

with circle, eQ , EQ, one leading, the other lagging. Hence, at a

given impressed e.m.f., EQ, the same power, PI, can be trans-

mitted by the same current, 7, with two different generated

e.m.fs., EI, of the motor; one, OEi = EEQ small, corresponding
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to a lagging current; and the other, OEi = EE large, corre-

sponding to a leading current. The former is shown in dotted

lines, the latter in full lines, in the diagram, Fig. 154.

Hence a synchronous motor can work with a given output, at

the same current with two different counter e.m.fs., E\. In one

of the cases the current is leading, in the other lagging.

FIG. 154.

In Figs. 155 to 158 are shown diagrams, giving the points

EQ = impressed e.m.f., assumed as constant = 1000 volts,

E = e.m.f. consumed by impedance, '-,,

E l e.m.f. consumed by resistance (not numbered).
The counter e.m.f. of the motor, Ei, is OE\, equal and parallel

EE
,
but not shown in the diagrams, to avoid complication.

The four diagrams correspond to the values of power, or motor

output,

P = 1,000, 6,000, 9,000, 12,000 watts, and give:

P = 1,000 46 < Ei < 2,200, 1 < / < 49 Fig. 155.

P = 6,000 340 < E l < 1,920, 7 < / < 43 Fig. 156.

P = 9,000 540 < El < 1,750, 11.8 < 7 < 38.2 Fig. 157.

P = 12,000 920 < El < 1,320, 20 < / < 30 Fig. 158.

As seen, the permissible value of counter e.m.f., Ei, and of

current, /, becomes narrower with increasing output.



SYNCHRONOUS MOTOR 313

E =1000
P=1000

46 < E'i<'2200

2170

2120

45.5

40

37.5

1050/1840 2/25
1480 32

1100 /1580 31/16.7

1250 7

FIG. 155.

E =1000
P=6000

340<Ei<1920
< 43

El I

340 17.3

430/630 10/30

750/1090 8/37.5

900/1720 7/43

10.40/1920 8/37.5

1170/1810 10/30
1450 17.3

FIG. 156.
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In the diagrams, different points of EQ are marked with 1, 2,

3 . . ., when corresponding to leading current, with 2 1

,
3 1

,

. . .
,
when corresponding to lagging current.

Eo=1000
P=9000

540<E,<1750
11.8<I<38.2

540 21.2

620/820 15/30

720/1100 13/34.7

900/1590 11.8/38.2^

1080/1750 13/34.7

1200/1660 15/30
1440 21.2

FIG. 157.

E =1000
P=12000

920<E,<1320
20<I<30

El I

3' 920 24.5

2' 920/1100 21/28.6

1000/1260 20/30

2 1120/1320 21/28.6
1280 24.5

FIG. 158.

The values of counter e.m.f., E\, and of current, /, are noted

on the diagrams, opposite to the corresponding points, EQ .
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In this condition it is interesting to plot the current as function

of the generated e.m.f., Ei, of the motor, for constant power, PI.

Such curves are given in Fig. 162 and explained in the following
on page 430.

219. While the graphic method is very convenient to get a

clear insight into the interdependence of the different quantities,

for numerical calculation it is preferable to express the diagrams

analytically.

For this purpose,

Let z = A/r2 + x2 impedance of the circuit of (equivalent)

resistance, r, and (equivalent) reactance, x = 2 Tr/L, containing
the impressed e.m.f., e and the counter e.m.f., e\, of the syn-
chronous motor 1

;
that is, the e.m.f. generated in the motor arma-

ture by its rotation through the (resultant) magnetic field.

Let i = current in the circuit (effective values).

The mechanical power delivered by the synchronous motor

(including friction and core loss) is the electric power consumed

by the counter e.m.f., e\] hence

p = id cos (i, ei) ; (1)

thus,

cos (i, 61)
= -r-j

sin

(2)

The displacement of phase between current i, and e.m.f. e = zi

consumed by the impedance, z, is

cos (i, e)
= -

sin (i, e)
-

(3)

Since the three e.m.fs. acting in the closed circuit,

eo = e.m.f. of generator,

e\ counter e.m.f. of synchronous motor,
e = zi = e.m.f. consumed by impedance,

1 If eo e.m.f. at motor terminals, z = internal impedance of the motor;
if eQ

= terminal voltage of the generator, z = total impedance of line and

motor; if e = e.m.f. of generator, that is, e.m.f. generated in generator

armature by its rotation through the magnetic field, z includes the generator

impedance also.
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form a triangle, that is, e\ and e are components of e
,
it is (Figs.

159 and 160),

eo
2 = 6i

2 + e2 + 2 ee\ cos (e\ t e), (4)

hence, cos (e\, e)
= e

(5)

since, however, by diagram,

cos (ei, e)
= cos (i, e i, ei)

= cos (i, e) cos (i, ei) + sin (i, e) sin
(?', 61) (6)

substitution of (2), (3) and (5) in (6) gives, after some trans-

position,

?i
2 - P 2

, (7)e< 2rp = 2 x

the fundamental equation of the synchronous motor, relating im-

pressed e.m.f., e
;
counter e.m.f., e\\ current, i\ power, p, and re-

sistance, r; reactance, x; impedance, z.

FIG. 159. FIG. 160.

This equation shows that, at given impressed e.m.f., eQ ,
and

given, impedance, z = VV 2 + x2
,
three variables are left, e\, i, p,

of which two are independent. Hence, at given e and z, the

current, i, is not determined by the load, p, only, but also by the

excitation, and thus the same current, i, can represent widely
different loads, p } according to the excitation; and with the same

load, the current, i, can be varied in a wide range, by varying the

field-excitation, e\.

The meaning of equation (7) is made more perspicuous by
some transformations, which separate e\ and i, as function of p
and of an angular parameter, 0.

Substituting in (7) the new coordinates;

6!
2 + 2 2

i
2

a =

or,
V
r-/5

VT
a (8)
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we get ,2_

substituting again, e
" = a

2zp = b

hence,

we get

a

and, squared,

substituting

r =
x = z\/l

2 rp =
e&,

2

317

(9)

(10)

- eb = V(l -e2
)(2a

2 -202 -&2
); (11)

M ,
^ - e

2
)

,
(a
-

&)
2

a - eb) -\ ^ j
~

(a -e6)V2__^ _

gives, after some transposition,

a(a-2e6),

hence, if

it is

(1
- 2

) (a
- 2 e6)a

= 0;

(12)

(13)

(14)

(15)

(16)v 2 + w 2 = R 2

the equation of a circle with radius, R.

Substituting now backward, we get, with some transpositions,

{r
2
(ei

2 + z 2
*
2
)
- z 2

(e
2 -

2rp)J
2 + {rx(d

2 + Z2
i
2
)}

2 =

Z2z2
e 2

(eo
2 - 4 rp) (17)

the fundamental equation of the synchronous motor in a modified

form.

The separation of e\ and i can be effected by the introduction

of a parameter, 0, by the equations

r 2
(ej

2 + zH 2
)
- z 2

(eQ
2 - 2 rp) = xzeQ\/eQ

2 - 4 rp cos </>
I

4 rp sin

These equations (18), transposed, give

l
=

\2 i r2^2 ~ cos sn - 4 rp
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r .

=
\2 1 (r5

(e
2 " cos ~ sn

The parameter, 0, has no direct physical meaning, apparently.

These equations (19) and (20), by giving the values of e\ and i

as functions of p and the parameter, <, enable us to construct

the power characteristics of the synchronous motor, as the curves

relating e\ and i, for a given power, p } by attributing to $ all

different values.

Since the variables, v and w, in the equation of the circle (16)

are quadratic functions of e\ and i, the power characteristics of

the synchronous motor are quartic curves.

They represent the action of the synchronous motor under all

conditions of load and excitation, as an element of power trans-

mission even including the line, etc.

Before discussing further these power characteristics, some

special conditions may be considered.

220. A. Maximum Output.

Since the expression of d and i [equations (19) and (20)] con-

tain the square root, \/eo2 4 rp, it is obvious that the maximum
value of p corresponds to the moment where this square root

disappears by passing from real to imaginary; that is,

e
2 4 rp =

0,

-

p = fr.
' -

'

(21)

This is the same value which represents the maximum power
transmissible by e.m.f., e

,
over a non-inductive line of resistance,

r; or, more generally, the maximum power which can be trans-

mitted over a line of impedance,

z = Vr2 + x2
,

into any circuit, shunted by a condenser of suitable capacity.

Substituting (21) in (19) and (20), we get,

(22)
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and the displacement of phase in the synchronous motor,

/ -\ P r
cos (ei, i)

= -r -;
i&i z

hence,

tan (e ly i)
= -

*, (23)

that is, the angle of internal displacement in the synchronous
motor is equal, but opposite to, the angle of displacement of line

impedance,

(ei, i)
= -

(e, i),

-
(z, r), (24)

and consequently,

(CQ, i)
=

0; (25)

that is, the current, ?',
is in phase with the impressed e.m.f., e .

If z < 2 r, ei < eoj that is, motor e.m.f. < generator e.m.f.

If z = 2 r, ei = 6o5 that is, motor e.m.f. = generator e.m.f.

If z > 2 r, e\ > eQ ]
that is, motor e.m.f. > generator e.m.f.

In either case, the current in the synchronous motor is leading.

221. B. Running Light, p = 0.

When running light, or for p =
0, we get, by substituting in

(19) and (20),

g
COS ^ +

z
sin ^

f

2
C S ""

(26)

Obviously this condition cannot well be fulfilled, since p must

at least equal the power consumed by friction, etc.
;
and thus the

true no-load curve merely approaches the curve p =
0, being,

however, rounded off, where curve (26) gives sharp corners.

Substituting p = into equation (7) gives, after squaring and

transposing,

ei
4+eo 4

-r-z
4; 4-2 eiW-2 zH2eQ*+2 z*i*ei*-4 xH2

ei
z = Q. (27)

This quartic equation can be resolved into the product of two

quadratic equations,

ei
2 + z*i* - e 2 + 2 xie l

= 0. 1 ,

ei
2 + z 2

*'
2 - e 2 - 2 xiei = 0.
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which are the equations of two ellipses, the one the image of the

other, both inclined with their axes.

The minimum value of counter e.m.f ., ei, is e\ = at i -
(29)

The minimum value of current, i, is i = at e\ e . (30)

The maximum value of e.m.f., ci, is given from equation (28)

/ = 6i
2
-f z 2

i
2 - eQ

z 2 xie* =
0;

200-

160-

i

\
gOOO Mto Vofte 1000 4000 6000

\
\

B' V
\

FIG. 161,

by the condition,

Ti*
hence,

df/di

d}/del
0, as zH + xei =

0,

X
-, (31)
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The maximum value of current, i, is given from equation (28) by

as

i = ~
ei = + 6 -. (32)

r r

If, as abscissas, Ci, and as ordinates, zi, are chosen, the axes

of these ellipses pass through the points of maximum power
given by equation (22).

It is obvious thus, that in the V-shaped curves of synchronous
motors running light, the two sides of the curves are not straight

lines, as sometimes assumed, but arcs of ellipses, the one of con-

cave, the other of convex, curvature.

These two ellipses are shown in Fig. 161, and divide the whole

space into six parts the two parts, A and A', whose areas con-

tain the quartic curves (19) (20) of the synchronous motor, the

two parts, B and #', whose areas contain the quartic curves of the

generator, the interior space, C, and exterior space, D, whose

points do not represent any actual condition of the alternator

circuit, but make e\ and i imaginary. Some of the quartic

curves, however, may overlap into space, C.

A and A' and the same B and B e
are identical conditions of

the alternator circuit, differing merely by a simultaneous reversal

of current and e.m.f., that is differing by the time of a half-period.
Each of the spaces A and B contains one point of equation (22),

representing the condition of maximum output as generator, viz.,

synchronous motor.

222. C. Minimum Current at Given Power.

The condition of minimum current, i, at given power, p, is

determined by the absence of a phase displacement at the im-

pressed e.m.f., CD,

(CD, i)
= 0.

This gives from diagram Fig. 160,

ei
2 = eQ

2 + i
2z 2 - 2 ie r, (33)

or, transposed,

ei = V(e - irY + iV. (34)

This quadratic curve passes through the point of zero current

and zero power,
i = 0, e\ Co,

21
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through the point of maximum power (22),

. _ 0o e Qz
=
2? 6l = "

27
and through the point of maximum current and zero power,

60 e x
* = ~, ei = > (35)

and divides each of the quartic curves or power characteristics

into two sections, one with leading, the other with lagging, cur-

rent, which sections are separated by the two points of equation

(34), the one corresponding to minimum, the other to maximum,
current.

It is interesting to note that at the latter point the current

can be many times larger than the current which would pass

through the motor while at rest, which latter current is,

while at no-load the current can reach the maximum value,
'

'

' '

''

(36)

(35)

the same value as would exist in a non-inductive circuit of the

same resistance.

The minimum value at counter e.m.f., e\, at which coincidence

of phase, (e , i)
=

0, can still be reached is determined from equa-
tion (34) by,

T-*di

as

i = e -
2

'

ei = e --
(37)

z 2 z

The curve of no-displacement, or gf minimum current, is shown

in Figs. 161 and 162 in dotted lines. 1

1 It is interesting to note that the equation (34) is similar to the value

ei = V(e ir)
2 i

2x 2
,
which represents the output transmitted over an

inductive line of impedance, z = vV2 + z2
, into a non-inductive circuit.

Equation (34) is identical with the equation giving the maximum voltage,

i, at current, i, which can be produced by shunting the receiving circuit with

a condenser; that is, the condition of "complete resonance" of the line, z

vr* + x 2
,
with current, t. Hence, referring to equation (35), e\ = e<r is

the maximum resonance voltage of the line reached when closed by a con-

denser of reactance, z.
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223. D. Maximum Displacement of Phase.

(0o> fc)
= maximum.

At a given power, p, the input is,

PQ
= p + i

zr = e i cos (eQ , i) ; (38)

hence
' cos K )

- 4^- (39)
d(fli

At a given power, p, this value, as function of the current, i,

is a maximum when

e i

this gives,

p =
i*r, (40)

or
'

That is, the displacement of phase, lead or lag is a maximum
when the power of the motor equals the power consumed by the

resistance; that is, at the electrical efficiency of 50 per cent.

Substituting (40) in equation (7) gives, after squaring and

transposing, the quartic equation of maximum displacement,

(eo
2 -

ei
2
)
2 + *

4z2(z
2 + 8 r2

) + 2 t
a
ei

a
(4 r2 - z 2

)
-

2 i'
a
eoV + 3 r2) = 0. (42)

The curve of maximum displacement is shown in dash-dotted

lines in Figs. 161 and 162. It passes through the point of zero

current as singular or nodal point and through the point of

maximum power, where the maximum displacement is zero, and
it intersects the curve of zero displacement.

224. E. Constant Counter e.m.f.

At constant counter e.m.f., e\ = constant.

If e x
&i <~ eo

-

the current at no-load is not a minimum, and is lagging. With

increasing load the lag decreases, reaches a minimum, and then

increases again, until the motor falls out of step, without ever

coming into coincidence of phase.

" ;
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the current is lagging at no-load. With increasing load the lag

decreases, the current comes into coincidence of phase with e
,

then becomes leading, reaches a maximum lead; then the lead

decreases again, the current comes again into coincidence of

phase, and becomes lagging, until the motor falls out of step.

If eQ < ei, the current is leading at no-load, and the lead first

increases, reaches a maximum, then decreases; and whether the

current ever comes into coincidence of phase and then becomes

lagging, or whether the motor falls out of step while the current

is still leading, depends whether the counter e.m.f. at the point
of maximum output is > eQ or < e<>.

225. F. Numerical Example.

Figs. 161 and 162 show the characteristics of a 100-kw. motor

supplied from a 2500-volt generator over a distance of 5 miles,

the line consisting of two wires, No. 2 B. & S., 18 in. apart.

In this case we have:

CQ = 2500 volts constant at generator terminals;

r = 10 ohms, including line and motor;
x = 20 ohms, including line and motor;

hence z = 22.36 ohms.

Substituting these values, we get:

(43)

2500 2 - eS - 500 i
2 - 20 p = 40VV - p

2
(7)

ei
2 + 500 i

2 - 31.25 X 10 6 + 100 p)
2
-f {2 ef - 1000 i

2
)

2 =

7.8125 X 10 14 - 5 X 109
p. (17)

i
= 5590 X (19)

3.2 X 10- 6

p) + (0.894 cos + 0.447 sin 0)

Vl - 6.4 X 10-6
p \

. (20)

i = 250 X

(1
- 3.2 X 10~ 6

p)+ (0.894 cos 0-0.447 sin 0)Vl6.4XlO- 6
p).

Maximum output,

p = 156.25 kw. (21)

at ei = 2795 volts .^
i = 125 amp.

Running light,

ei
2 + 500 i

z - 6.25 X 10 4 + 40 iei = 1 ,

2g
,

ei = 20 i V6.25 X 10 4 - 100 z
2
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At the minimum value of counter e.m.f., e\ is i 112 (29)

At the minimum value of current, i is e\ 2500 (30)

At the maximum value of counter e.m.f., e\ 5590 is i = 223.5 (31)

At the maximum value of current, i = 250 is e\ 5000. (32)

Curve of zero displacement of phase,

61 = 10 V(250 -
i}

2 + 4i 2
(34)

= 10 V6.25 X 10 4 - 500 i + 5 i
2

.

260

180

ISO

120

>7

Vo'l 3

600 1000 150U 2000 2500 '2000 3500 1000 41500 6000 6500

FIG. 162.

Minimum counter e.m.f. point of this curve,

i = 50, 0! = 2240. (35)

Curve of maximum displacement of phase,

p = 10 i
2

(40)

(6.25 X 106 - d2
)
2 + 0.65 X 106 i 4 - 10 10

i
2 = (42)
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Fig. 161 gives the two ellipses of zero power in full lines,

with the curves of zero displacement in dotted, the curves of

maximum displacement in dash-dotted lines, and the points of

maximum power as crosses.

Fig. 162 gives the motor-power characteristics for p = 10 kw.;

p = 50 kw.; p = 100 kw.; p = 150 kw., and p = 156.25 kw.,

together with the curves of zero displacement and of maximum

displacement.
226. G. Discussion of Results.

The characteristic curves of the synchronous motor, as shown
in Fig. 162, have been observed frequently, with their essential

features, the V-shaped curve of no-load, with the point rounded

off and the two legs slightly curved, the one concave, the other
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convex; the increased rounding off and contraction of the curves

with increasing load; and the gradual shifting of the point of

minimum current with increasing load, first toward lower, then

toward higher, values of counter e.m.f., e\.

The upper parts of the curves, however, I have never been

able to observe completely and consider it as probable that

they correspond to a condition of synchronous motor running,

which is unstable. The experimental observations usually
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extend about over that part of the curves of Fig. 162 which is

reproduced in Fig. 163, and in trying to extend the curves

further to either side, the motor is thrown out of synchronism.
It must be understood, however, that these power charac-

teristics of the synchronous motor in Fig. 162 can be considered

as approximations only, since a number of assumptions are made
which are not, or only partly, fulfilled in practice. The fore-

most of these are:

1. It is assumed that e\ can be varied unrestrictedly, while

in reality the possible increase of e\ is limited by magnetic
saturation. Thus in Fig. 162, at an impressed e.m.f., eQ =
2500 volts, d rises up to 5590 volts, which may or may not be

beyond that which can be produced by the motor, but certainly

is beyond that which can be constantly given by the motor.

2. The reactance, x, is assumed as constant. While the

reactance of the line is practically constant, that of the motor

is not, but varies more or less with the saturation, decreasing
for higher values. This decrease of x increases the current, i,

corresponding to higher values of e\ t
and thereby bends the curves

upward at a lower value of e\ than represented in Fig. 162.

It must be understood that the motor reactance is not a

simple quantity, but represents the combined effect of self-

induction, that is, the e.m.f. generated in the armature con-

ductor by the current therein and armature reaction, or the

variation of the counter e.m.f. of the motor by the change of

the resultant field, due to the superposition of the m.m.f. of

the armature current upon the field-excitation
;
that is r it is the

"synchronous reactance."

3. Furthermore, this synchronous reactance usually is not a

constant quantity even at constant induced e.m.f., but varies

with the position of the armature with regard to the field; that

is, varies with the current and its phase angle, as discussed in the

chapter on the armature reactions of alternators. While in

most cases the synchronous reactance can be assumed as con-

stant, with sufficient approximation, sometimes a more com-

plete investigation is necessary, consisting in a resolution of the

synchronous impedance in two components, in phase and in

quadrature respectively with the field-poles.

Especially is this the case at low power-factors. So by

gradually decreasing the excitation and thereby the e.m.f., e,

the curves may, especially at light load, occasionally be extended
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below zero, into negative values of e, or onto the part of the

curve, B
y
in Fig. 161, while the power still remains constant

and positive, as synchronous motor. In other words, the motor

keeps in step even if the field-excitation is reversed; the lagging

component of the armature reaction magnetizes the field, in

opposition to the demagnetizing action of the reversed field

excitation.

4. These curves in Fig. 162 represent the conditions of con-

stant electric power of the motor, thus including the mechan-

ical and the magnetic friction (core loss). While the mechanical

friction can be considered as approximately constant, the mag-
netic friction is not, but increases with the magnetic induction;

that is, with e\, and the same holds for the power consumed for

field excitation.

Hence the useful mechanical output of the motor will on the

same curve, p = const., be larger at points of lower counter

e.m.f., ei t
than at points of higher e\\ and if the curves are

plotted for constant useful mechanical output, the whole system
of curves will be shifted somewhat toward lower values of e\\

hence the points of maximum output of the motor correspond
to a lower e.m.f. also.

It is obvious that the true mechanical power characteristics

of the synchronous motor can be determined only in the case of

the particular conditions of the installation under consideration.

227. H. Phase Characteristics of the Synchronous Motor.

I
While an induction motor at constant impressed voltage is

fully determined as regards to current, power-factor, efficiency,

etc., by one independent variable, the load or output; in the

synchronous motor two independent variables exist, load and

field-excitation. That is, at constant impressed voltage the

current, power-factor, etc., of a synchronous motor can at the

same power output be varied over a wide range by varying
the field-excitation, that is, the counter e.m.f. or "nominal gener-

ated e.m.f." Hence the synchronous motor can be utilized to

fulfill two independent functions: to carry a certain load and to

produce a certain wattless current, lagging by under-excitation,

leading by over-excitation. Synchronous motors are, therefore,

to a considerable extent used to control the phase relation and

thereby the voltage, in addition to producing mechanical power.
The same applies to synchronous converters.

With given impressed e.m.f., field-excitation or nominal gener-
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ated e.m.f. corresponding thereto, and load, determine all the

quantities of the synchronous motor, as current, power-factor,
etc. Thus if in diagram Fig. 164, OE = e = e.m.f. consumed by
the counter e.m.f. or nominal generated e.m.f. of the synchronous

motor, and if PQ = output of motor (exclusive of friction and core

loss and, if the exciter is driven by the motor, power consumed
r>

by the exciter), i\ = power component of current, repre-
v

sented by 01 1, and the current vector therefore must terminate

on a line, i, perpendicular to 01 1. If, then, r = resistance and

x = reactance of the circuit between counter e.m.f., e, and im-

FIG. 164.

pressed e.m.f., CQ, OEr
= i-p = e.m.f. consumed by resistance,

OEX = iix = e.m.f. consumed by reactance of the power com-

ponent of the current, i\, hence OE'i = e.m.f. consumed by

impedance of the power component of the current, i\, and the

impedance voltage of the total current lies on the perpendicular
e' on OE'i. Producing OEi = OE

} and drawing an arc with

the impressed e.m.f., e
,
as radius and E\ as center, the point

of intersection with e' gives the impedance voltage, OE', and

corresponding thereto the current 01 =
i\ and completing the

parallelogram, OEEQE', gives the impressed e.m.f., OEQ .

Hence, by impressed e.m.f., e
,
counter e.m.f., e, and load, Po,

the vector diagram is determined, and thereby the vectors, 01 =
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current, OE = impressed e.m.f., OE = counter e.m.f., and

their phase relation.

Or, in symbolic representation, let

EQ = e\ je"Q
= impressed e.m.f.;

eQ = VV 2 + eo"
2

; (1)

E = e' je" = e.m.f. consumed by counter e.m.f.;

e = Ve/2 -M" 2
; (2)

l=i = current, assumed as zero vector;

Z = r + jx = impedance of circuit between eQ and e.

Z is the synchronous impedance of the motor, if eQ is its ter-

minal voltage. It is the impedance of transmission line with

transformers and motor, if eQ is terminal voltage of generator, and

Z is synchronous impedance of motor and generator, plus impe-
dance of line and transformers, if eo is the nominal generated
e.m.f. of the generator (corresponding to its field-excitation).

It is, then,
EQ

= E + %Z
t (3)

or,

e'o
-

je"Q
= e

r -
je" + ir + jix, (4)

and, resolved,

Vo = e' + ir; (5)

e
" = e

" - ix. (6)

The power output of the motor (inclusive of friction and core

loss, and if the exciter is driven by the motor, power consumed

by exciter) is current times power component of generated

e.m.f., or

Po = e'i. (7)

Hence, the calculation of the motor, of supply voltage e Q

from power output, PQj occurs by the equations:

Chosen: i = current.

(7) e' =
,

(5) e' = e' + ir,

(1) e", =

(6) e" = e", + ix

(2) e = V^M1

(8)

That is, at given power, P ,
to every value of current, i, corre-

spond two values of the counter e.m.f., e (and hence the field-

excitation).
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Solving equations (8) for i and P
,
that is, eliminating e',

e'o, e"
, e", gives as the nominal generated e.m.f.,

/ 9 9-91 9-9 rr>if>-/9 /* i A 2
(Q\

e = A/CO fHa + JC*l
a 2 rr + 2 xi A/^O l~ r rl

,
vy /

and the power-factor of the motor is,

f>.
r P

(10)COS
ei

The power-factor of the supply is

cos 0o =

Po
,

.

e^o = ^
+tr

= Po + r^2

#o 60 60^'

(ID

From equation (9), by solving for i, i can now be expressed as

function of P and e, that is, of power output and field-excitation.

200 400 COO 800 1000 1200 1400 1600 1800 2000 2200 2400 2COO-2800 8000 8200 3400 3COO 880040004200
VOLTS = 6

FIG. 165.

248. As illustrations are plotted, in Fig. 165, curves giving the

current, i, as function of the counter or nominal generated e.m.f.,

e, at constant power, P . Such curves as discussed before in Figs.

161, 162, 163, are called "phase characteristics of the synchro-
nniic Tr/-kfrT *'nous motor."
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They are given for the values

6 = 2200 volts,

Z = 1 + 4 j ohms,
and

Po = 20, 200, 400, 600, 800, 1000 kw. output.

The five equations of the synchronous motor,

(1) e 2 = e
' 2 + e

" 2
,

(2) e
2 = e'

2 + e" 2
,

(7) Po =
e'i,

(5) e'Q = e' + ir,

(6) e" = e" -
ix,

determine the five quantities, e'
,
e"

, e', e"
', e, as functions of P

and i.

The condition of zero phase displacement, or unity power-
factor at the impressed e.m.f., e

,
is

e". = 0;

hence e' = eQ ,

and (6) e" =
is,

(5) e
' = 6 -

ir;

hence,

e 2 =
(CQ

- irY + , (12)

a quadratic equation, the hyperbola of unity power-factor,

shown as dotted line in Fig. 165.

In this case, the power is found by substituting e' = e ir

in Po = e' i, as

Po - e i - i
z
r, (13)

or

47P 01
(

The maximum output of the synchronous motor follows here-

from, by the condition,

in above example

Pm = 1210 kw. at i = 1100 amp.
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The curve of unity power-factor (12) divides the synchronous

motor-phase characteristics into two sections, one, for lower e,

with lagging, the other with leading current.

The study of these "phase characteristics,'
7

Fig. 165, gives the

best insight into the behavior of the synchronous motor under
conditions of steady operation.

400 500 600

KILOWATTS
900

FIG. 168.

229. I. Load Curves of Synchronous Motor.

Of special interest are the "load curves" of the synchronous

motor, or curves giving, at constant excitation, e constant,

the current, power-factor, efficiency and apparent efficiency as
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function of the load or output P PQ (friction + core loss +
excitation). Such load curves are represented in Figs. 166 to

170, for e = 1600, 2000, 2180, 2400, 2800 volts. They can

be derived from Fig. 165 as the intersection of the curves P =
constant with the vertical lines e = constant.

Hence, while an induction motor has one load curve only, a

synchronous motor has an infinite series of load curves, depend-

ing upon the value of e.

1000 1002

400 500 600

KILOWATTS

FIG. 169.

800 900

For low values of e (e
= 1600, under excitation, Fig. 166),

the load curves are similar to those of an induction motor.

The current is lagging, the power-factor rises from a low initial

value to a maximum, and then falls again. With increasing

excitation (e
= 2000, Fig. 167) the power-factor curve rises to

values beyond those available in induction motors, approaches
and ultimately touches unity, and with still higher excitation

(e
= 2180, Fig. 168) two points of unity power-factor exist, at

P = 20 and P = 450 kw. output, which are separated by a

range with leading current, while at very low and very high load

the current is lagging. The first point of unity power-factor
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moves toward P = 0, and then disappears, that is, the current

becomes leading already at no-load, and the second point of

unity power-factor moves with increasing excitation toward

higher loads, from P = 450 kw. at e = 2180 in Fig. 168, to P =
700 kw. at e = 2400, Fig. 169, and P = 900 kw. at e = 2800,

Fig. 170, while the power-factor and thereby the apparent

efficiency decrease at light loads. The maximum output in-

creases with the increase of excitation and almost proportionally
thereto.

000

800

700
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Considering the intersections of a horizontal line with the

constant power curves of Fig. 165, gives the characteristic curves
of the synchronous motor when operating on constant current.

Such curves are shown for i = 300 in Fig. 171. They illustrate
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FIG. 171.

that at the same impressed voltage, with the same current input
the power output of the synchronous motor can vary over a wide

range, and also that for each value of power output two points

exist, one with lagging, the other with leading current.
22
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As regards phase characteristics and load characteristics,

the same applies to the synchronous converter as to the syn-

chronous motor, except that in the former the continuous cur-

rent output affords a means of automatically varying the

excitation with the load.

230. The investigation of a variation of the armature reaction

and the self-induction, that is, of the synchronous reactance,

with the position of the armature in the magnetic field, and so

the intensity and phase of the current in its effect on the charac-

teristic curves of the synchronous motor, can be carried out in

the same manner as done for the alternating-current generator

in Chapter XX.
In the graphical and the symbolic investigations in Chapter

XX, the current, / = i\ jiz, has been considered as the

output current, and chosen of such phase as to differ less than

90 from the terminal voltage, E = e\ + je^, so representing

power output.

Choosing then the current vector, 01, in opposite direction from

that chosen in Figs. 139 and 140, and then constructing the

diagram in the same manner as done in Chapter XX, brings the

output current, 01, more than 90 displaced from the terminal

voltage, OE. Then the current consumes power, that is, the

machine is a synchronous motor. The graphical representation

in Chapter XX so applies equally well to alternating-current

generator as to synchronous motor, and the former corresponds

to the case Z EOI < 90, the latter to the case: Z EOI > 90.

In the same manner, in the symbolic representation of Chapter

XX, choosing the current as I = i\ + jiz, or, in the final

equation, where the current has been assumed as zero vector,

/ =
i, that is, reversing all the signs of the current, gives the

equations of the synchronous motor.

Choosing the same denotations as in Chapter XX, and sub-

stituting i for + i in equation (64) so gives the general

equation of the synchronous motor,

(ei n')
2

V(ei-

and for non-inductive load,

= (e -r
60 ~

V(e -
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Or, by choosing 01 in the graphic, and I = I' + /" in the

symbolic method, as the input current, the diagram can be

constructed by combining the vectors in their proper directions,

that is, where they are added in Chapter XX, they are now

subtracted, and inversely. For instance,

Ei = E2 + Ei, E = Ei + # 4 ,
etc.

The reversal of the sign of the current in the above equations,

compared with the equations of Chapter XX, shows that in the

synchronous motor, the effect of lag and of lead of the input

current are the opposite of the effect of lag and lead of the output
current in the generator, as discussed before.

It also follows herefrom, that the representation of the internal

reactions of the synchronous motor by an effective reactance,

the "
synchronous reactance," is theoretically justified; but that,

like in the alternating-current generator, this reactance may have

to be resolved in two components, x' Q and x", parallel and at

right angles respectively to the field-poles.

231. The phase characteristics, Fig. 165, and more particularly

the no-load curve, is of special importance in the so-called syn-

chronous condenser, that is, a synchronous machine running idle

and producing lagging or leading current at will.

As at constant impressed voltage, the reactive current taken

by the synchronous machine depends upon, and varies with the

field-excitation, synchronous motors offer a convenient means for

producing reactive currents of varying amounts.

As lagging reactive currents can more conveniently be pro-

duced by stationary reactors, synchronous machines are mainly
used for producing leading currents, or producing reactive cur-

rents varying between lag and lead. Therefore, the name

"synchronous condenser" for such machines.

Their foremost use is :

1. For power-factor correction in systems of low power-

factor, such as systems containing many induction motors or

other reactive devices. In this case, the synchronous condenser

is connected in shunt to the circuit as close to the source of the

reactive lagging currents as feasible.

2. For voltage control of long-distance transmission lines.

In very long lines, especially at 60 cycles, the inherent voltage

regulation at the receiving end of the line becomes very poor,

and then a synchronous condenser is made to "float" on the
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receiving circuit, controlled by a voltage regulator so that its

reactive current varies from lag at no-load on the line, to lead at

heavy load, and thereby maintains the line voltage constant.

In synchronous condensers, low armature reaction is an ad-

vantage, as requiring less field regulation.

As synchronous condensers must run at high leading currents,

and this is the condition where the tendency to surging is greatest,

synchronous condensers are usually supplied with anti-hunting

devices. For this purpose, generally a squirrel-cage winding in

the field-poles is used. Such a winding is desirable also to

improve the self-starting character of the machine.

Very large synchronous condensers are in successful operation

on transmission lines of such length, that without the syn-

chronous condenser, operation of the circuits would be entirely

impossible.



SECTION VI

GENERAL WAVES

CHAPTER XXV

DISTORTION OF WAVE-SHAPE AND ITS CAUSES

232. In the preceding chapters we have considered the alter-

nating currents and alternating e.m.fs. as sine waves or as

replaced by their equivalent sine waves.

While this is sufficiently exact in most cases, under certain

circumstances the deviation of the wave from sine shape becomes
of importance, and with certain distortions it may not be pos-
sible to replace the distorted wave by an equivalent sine wave,
since the angle of phase displacement of the equivalent sine

wave becomes indefinite. Thus it becomes desirable to investi-

gate the distortion of the wave, its causes and its effects.

Since, as stated before, any alternating wave can be repre-
sented by a series of sine functions of odd orders, the inves-

tigation of distortion of wave-shape resolves itself in the in-

vestigation of the higher harmonics of the alternating wave.
In general we have to distinguish between higher harmonics

of e.m.f. and higher harmonics of current. Both depend upon
each other in so far as with a sine wave of impressed e.m.f. a

distorting effect will cause distortion of the current wave, while

with a sine wave of current passing through the circuit, a dis-

torting effect will cause higher harmonics of e.m.f.

233. In a conductor revolving with uniform velocity through
a uniform and constant magnetic field, a sine wave of e.m.f. is

generated. In a circuit with constant resistance and constant

reactance, this sine wave of e.m.f. produces a sine wave of

current. Thus distortion of the wave-shape or higher har-

monics may be due to lack of uniformity of the velocity of

the revolving conductor; lack of uniformity or pulsation of the

magnetic field; pulsation of the resistance or pulsation of the

reactance.

341
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The first two cases, lack of uniformity of the rotation or of the

magnetic field, cause higher harmonics of e.m.f. at open circuit.

The last, pulsation of resistance and reactance, causes higher har-

monics only when there is current in the circuit, that is, underload.

Lack of uniformity of the rotation is hardly ever of practical

interest as a cause of distortion, since in alternators, due to

mechanical momentum, the speed is always very nearly uniform

during the period. A periodic pulsation of speed may occur in

low speed singlephase machines.

Thus as causes of higher harmonics remain:

1st. Lack of uniformity and pulsation of the magnetic field,

causing a distortion of the generated e.m.f. at open circuit as

well as under load.

2d. Pulsation of the reactance, causing higher harmonics under

load.

3d. Pulsation of the resistance, causing higher harmonics under

load also.

Taking up the different causes of higher harmonics, we have :

Lack of Uniformity and Pulsation of the Magnetic Field.

234. Since most of the alternating-current generators con-

tain definite and sharply defined field-poles covering in different

types different proportions of the pitch, in general the mag-
netic flux interlinked with the armature coil will not vary as a

sine wave, of the form

$ cos /3,

but as a complex harmonic function, depending on the shape
and the pitch of the field-poles and the arrangement of the

armature conductors. In this case the magnetic flux issuing

from the field-pole of the alternator can be represented by the

general equation,

$ = A Q + Ai cos/3 + A 2 cos 2 + A 3 cos 3 /8 -j- . ...

+ 1 sin + 2 sin 2 ft + B 3 sin 3 ft + . . ;

If the reluctance of the armature is uniform in all directions,

so that the distribution of the magnetic flux at the field-pole

face does not change by the rotation of the armature, the rate

of cutting magnetic flux by an armature conductor is <f>, and

the e.m.f. generated in the conductor thus equal thereto in

wave-shape. As a rule A
,
A 2 ,

A 4 . . . B2 ,
B 4 equal zero;

that is, successive field-poles are equal in strength and distribu-
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tion of magnetism, but of opposite polarity. In some types of

machines, however, especially inductor alternators, this is not

the case.

The e.m.f. generated in a full-pitch armature turn that is,

armature conductor and return conductor distant from former

by the pitch of the armature pole (corresponding to the distance

from field-pole center to pole center) is

de = <o ^iso

= 2
{ Ai cos ]8 + A s cos 3 + A 5 cos 5 + . . .

+ Bi sin + B z sin 3 + 5 sin 5 + . .

N6 Load

x,= = 146.5

7

FIG. 172.

Even with an unsymmetrical distribution of the magnetic
flux in the air-gap, the e.m.f. wave generated in a full-pitch

armature coil is symmetrical, the positive and negative half-

waves equal, and correspond to the mean flux distribution of

adjacent poles. With fractional pitch-windings that is, wind-

ings whose turns cover less than the armature pole-pitch

the generated e.m.f. can be unsymmetrical with unsymmetrical

magnetic field, but as a rule is symmetrical also. In unitooth

alternators the total generated e.m.f. has the same shape as that

generated in a single turn.

With the conductors more or less distributed over the surface

of the armature, the total generated e.m.f. is the resultant of
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several e.m.fs. of different phases, and is thus more uniformly

varying; that is, more sinusoidal, approaching sine shape to

within 3 per cent, or less, as for instance the curves Fig. 172

and Fig. 173 show, which represent the no-load and full-load

wave of e.m.f . of a three-phase multitooth alternator. The prin-

cipal term of these harmonics is the third harmonic, which con-

sequently appears more or less in all alternator waves. As a

rule these harmonics can be considered together with the har-

monics due to the varying reluctance of the magnetic circuit.

In iron-clad alternators with few slots and teeth per pole, the

passage of slots across the field-poles causes a pulsation of the

130
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In a machine with 7 slots per pole, the instantaneous flux inter-

linked with the armature conductors will be

</
= $ cos

{
1 + e cos [2 7/3

-
0] } ,

if the assumption is made that the pulsation of the magnetic
flux follows a simple sine law, as first approximation.

Irr general the instantaneous magnetic flux interlinked with

the armature conductors will be

= $ cos
{
1 + ei cos (2 /?

- 00 + 2 cos (4 /3
-

2) + . . .
} ,

where the term ey is predominating, if 7 = number of armature

slots per pole. This general equation includes also the effect of

lack of uniformity of the magnetic flux.

In case of a pulsation of the magnetic flux with the fre-

quency, 2 7, due to an existence of 7 slots per pole in the arma-

ture, the instantaneous value of magnetism interlinked with the

armature coil is

= 3> cos
{
1 + e cos [2 7/3

-
0] }

.

Hence the e.m.f. generated thereby,

dd>
e " ~ n

Tt

-

V2*f*jp {cos 0(1 + e cos [2 T -
0])}.

And, expanded,

e = V2irfn$>
{

sin ft + e
27

2

~ *
sin [ (2 7 - 1)0

-
0]

+ e^^ sin [(27+1)0-01
}'

Hence, the pulsation of the magnetic flux with the frequency,

2 7, as due to the existence of 7 slots per pole, introduces two

harmonics, of the orders (2 7 1) and (27 + 1).

236. If 7 = 1 it is

e = v/2 7r/n$ {
sin ft + 1 sin (0

-
0) + ~ sin (3

-
0) 1 ;

I Z .4 J

that is, in a unitooth single-phaser a pronounced triple har-

monic may be expected, but no pronounced higher harmonics.

Fig. 174 shows the wave of e.m.f. of the main coil of a mono-

cyclic alternator at no load, represented by,
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e = E
{
sin ft

- 0.242 sin (30- 6.3)
- 0.046 sin (5

-
2.6)

+ 0.068 sin (7
-

3.3)
- 0.027 sin (90- 10.0)

- 0.018

sin (11
-

6.6) + 0.029 sin (13
-

8.2)};

hence giving a pronounced triple harmonic only, as expected.

If 7 =
2, it is,

e = V2irfn3>
{

sin + y sin (3
-

0) + y sin (5
-

0)
}

,

the no-load wave of a unitooth quarter-phase machine, having

pronounced triple and quintuple harmonics.
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lesser triple harmonic, probably due to the deviation of the field

from uniformity, as explained above, and deviation of the

pulsation of reluctance from sine-shape. In some especially

favorable cases, harmonics as high as the 35th and 37th have been

observed, caused by pulsation of the reluctance, and even still

higher harmonics.

In general, if the pulsation of the magnetic reactance is denoted

by the general expression
00

1 + 2 7 67r cos (2 T|3
-

7),

10 20 30 40 50 60 70 80 90 100 110 120 130 1.40*150160 170 180

FIG. 175. No-load wave of e.m.f. of unitooth three-phase alternator.

the instantaneous magnetic flux is

= 3> cos
-

7 cos (2 70 - T)

cos + cos (ft
- 00 +

r
2v
i L2

cos [(2 7

n COS 1(2 T

hence, the e.m.f.,

sn sn -

[e7 sin [(2 T + D0 - *
T] + T+1 sin [(2 7 + 1)0

-
7+J]
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With the general adoption of distributed fractional pitch arma-

ture windings, such pronounced wave shape distortions as shown

by the unitooth alternators shown as illustrations, have become

infrequent.

Pulsation of Reactance

236. The main causes of a pulsation of reactance are mag-
netic saturation and hysteresis, and synchronous motion. Since

in an iron-clad magnetic circuit the magnetism is not propor-
tional to the m.m.f., the wave of magnetism and thus the wave
of e.m.f. will differ from the wave of current. As far as this

distortion is due to the variation of permeability, the distortion is

symmetrical and the wave of generated e.m.f. represents no

power. The distortion caused by hysteresis, or the lag of the

magnetism behind the m.m.f., causes an unsymmetrical distor-

tion of the wave which makes the wave of generated e.m.f.

differ by more than 90 from the current wave and thereby

represents power the power consumed by hysteresis.

In practice both effects are always superimposed; that is,

in a ferric inductive reactance, a distortion of wave-shape takes

place due to the lack of proportionality between magnetism and

m.m.f. as expressed by the variation in the hysteretic cycle.

This pulsation of reactance gives rise to a distortion con-

sisting mainly of a triple harmonic. Such current waves dis-

torted by hysteresis, with a sine wave of impressed e.m.f., are

shown in Figs. 80 and 81, Chapter XII, on Hysteresis. In-

versely, if the current is a sine wave, the magnetism and the

e.m.f. will differ from sine-shape.

For further discussion of this distortion of wave-shape by

hysteresis, Chapter XII may be consulted.

237. Distortion of wave-shape takes place also by the pul-

sation of reactance due to synchronous rotation, as discussed

in the chapter on Reaction Machines, in "Theory and Calculation

of Electrical Apparatus."
With a sine wave of e.m.f., distorted current waves result.

Inversely, if a sine wave of current,

i = I cos 0,

exists through a circuit of synchronously varying reactance,

as for instance, the armature of a unitooth alternator or syn-

chronous motor or, more general, an alternator whose arma-
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ture reluctance is different in different positions with regard to

the field-poles and the reactance is expressed by

X = x {1 + cos (20 - 61)};

or, more general,
r

X = x 1 + 2yey cos (2 70 - By
i

the wave of magnetism is

X x != ^ r COS =
r- COS -f- 2LeY COS COS (270 T)Z Trjn. 2 irjn { i

cos + i1

cos (0
- 00 + ST I ^ cos [(2 7 + 1)

^ i

[(2.T

hence the wave of generated e.m.f.,

'^5(8
l= x i sin + sin (0 0i) +

2 y ,
sin [(2 7 + 1)0

that is, the pulsation of reactance of frequency, 2 7, introduces

two higher harmonics of the order (2 7 1) and (27 + !).

If

X = x{l +c cos (20 - 0)},

it is

cos/? + cos ^ ~~

e = a; sn sn 8 -

cos 3 ^ ~

-sm (3 j8
-

Since the pulsation of reactance due to magnetic saturation

and hysteresis is essentially of the frequency, 2 / that is,

describes a complete cycle for each half-wave of current this

shows why the distortion of wave-shape by hysteresis consists

essentially of a triple harmonic.

The phase displacement between e and i, and thus the power
consumed or produced in the electric circuit, depends upon the

angle, 9, as discussed before.
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238. In case of a distortion of the wave-shape by reactance,

the distorted waves can be replaced by their equivalent sine

waves, and the investigation with sufficient exactness for most

cases be carried out under the assumption of sine waves, as done

in the preceding chapters.

Similar phenomena take place in circuits containing polari-

zation cells, leaky condensers, or other apparatus representing

a synchronously varying negative reactance. Possibly dielectric

hysteresis in condensers causes a distortion similar to that due

to magnetic hysteresis.

Inversely, at very high voltages, where corona appears on

the conductors, with a sine wave of impressed voltage, a distor-

tion of the capacity current wave occurs, which is largely effect-

ive, but partly reactive due to the increase of capacity under

corona.

Pulsation of Resistance

239. To a certain extent the investigation of the effect of

synchronous pulsation of the resistance coincides with that of

reactance; since a pulsation of reactance, when unsymmetrical
with regard to the current wave, introduces a power component
which can be represented by an "effective resistance."

Inversely, an unsymmetrical pulsation of the ohmic resistance

introduces a wattless component, to be denoted by "effective

reactance."

A typical case of a synchronously pulsating resistance is

represented in the alternating arc.

The apparent resistance of an arc depends upon the current

through the arc; that is, the apparent resistance of the arc =

potential difference between electrodes . , . ,
- ,,

is high for small currents,
current

low for large currents. Thus in an alternating arc the apparent
resistance will vary during every half-wave of current between a

maximum value at zero current and a minimum value at maxi-

mum current, thereby describing a complete cycle per half-wave

of current.

Let the effective value of current through the arc be repre-

sented by /.

Then the instantaneous value of current, assuming the current

wave as sine wave, is represented by

i = I V2 sin 0;
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and the apparent resistance of the arc, in first approximation, by

R = r(l +0082)3);

thus the potential difference at the arc is

e = iR = I\/2r sin ft (1 + e cos 2 /?)

= rl\/2
{ (

1 -
I)

sin ft +
J-

sin 3

Hence the effective value of potential difference,

-r/^I

and the apparent resistance of the arc,

r =
j-
=

The instantaneous power consumed in the arc is

ie = 2 rl 2
1 (l

-
^} sin 2

ft + ^ sin /3 sin 3 )
I \ Z/ A J

Hence the effective power,

P = 1

The apparent power, or volt-amperes consumed by the arc,

-c-f -

Thus the power-factor of the arc,

that is, less than unity.

240. We find here a case of a circuit in which the power-factor

that is, the ratio of watts to volt-amperes differs from unity

without any displacement of phase; that is, while current and

e.m.f. are in phase with each other, but are distorted, the alter-

nating wave cannot be replaced by an equivalent sine wave,
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since the assumption of equivalent sine wave would introduce a

phase displacement,

cos 9 = p

of an angle, 6, whose sign is indefinite.

As an example are shown, in Fig. 176, for the constants, / =
12,

r = 3, e = 0.9, the resistance,

R = 3 (1 + 0.9 cos 2/8);

the current,

i = 17 sin 0;

\

AF IABLE

= 28(

1 +. 9 cis 2 6)

RESISTANCE

3/3)

A

FIG. 176. Periodically varying resistance.

the potential difference,

e = 28 (sin /3 + 0.82 sin 3 /3).

In this case the effective e.m.f. is

E = 25.5;
the apparent resistance,

r = 2.13;
the power,

P = 244;
the apparent power,

El = 307;
the power-factor,

p = 0.796.
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As seen, with a sine wave of current the e.m.f. wave in an

alternating arc will become double-peaked, and rise very abruptly
near the zero values of current. Inversely, with a sine wave of

e.m.f. the current wave in an alternating arc will become peaked,
and very flat near the zero values of e.m.f.

241. In reality the distortion is of more complex nature,

since the pulsation of resistance in the arc does not follow a

simple sine law of double frequency, but varies much more

abruptly near the zero value of current, making thereby the

variation of e.m.f. near the zero value of current much more

abruptly, or, inversely, the variation of current more flat.

10 11 13 13 14 15^/16 17

ONE PAIR CARBONS
REGULATED BY HANDJT\
I.. A, C. dynamo e, m-,

f,|| \
II.

*-f '" " currents

III."
'" " watts. ,

V

21 23 X

FIG. 177. Electric arc.

A typical wave of potential difference, with an approximate
sine wave of current through the arc, is given in Fig. 177. 1

242. The value of e, the amplitude of the resistance pulsation,

largely depends upon the nature of the electrodes and the

steadiness of the arc, and with soft carbons and a steady arc is

small, and the power-factor, p, of the arc near unity. With hard

carbons and an unsteady arc, e rises greatly, higher harmonics

appear in the pulsation of resistance, and the power-factor, p,

falls, being in extreme cases even as low as 0.6. Especially is

this the case with metal arcs.

This double-peaked appearance of the voltage wave, as shown

by Figs. 176 and 177, is characteristic of the arc to such an extent

1 From American Institute of Electrical Engineers, Transactions, 1890,

p. 376. Tobey and Walbridge, on the Stanley Alternate Arc Dynamo.
23
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that when in the investigation of an electric circuit by oscillo-

graph such a wave-shape is found, the existence of an arc or

arcing ground somewhere in the circuit may usually be sus-

pected. This is of importance as in high-voltage systems arcs

are liable to cause dangerous voltages.

The pulsation of the resistance in an arc, as shown in Fig. 177

for hard carbons, is usually very far from sinusoidal, as assumed

in Fig. 176. It is due to the feature of the arc that the voltage
consumed in the arc flame decreases with increase of current

approximately inversely proportional to the square root of the

current and so is lowest at maximum current.

Approximately, the volt-ampere characteristic of the arc can

be represented by,
s*

e = CQ + j=, (1)

where eo is a constant of the electrode material (mainly), c a con-

stant depending also upon the electrode material and on the

arc length, and approximately proportional thereto.

This equation would give e = <, for i = 0. This obviously
is not feasible. However, besides the arc conduction as given

by above equation which depends upon mechanical motion

of the vapor stream a slight conduction also takes place

through the residual vapor between the electrodes, as a path of

high resistance, r, and near zero current, where the voltage is

not sufficient to maintain an arc, this latter conduction carries

the current.

The characteristic of the alternating-current arc therefore

consists of the combination of two curves : the arc characteristic,

(1), and the resistance characteristic,

e = ri. (2)

The phenomenon then follows that curve which gives the

lowest voltage; that is, for high values of current, is represented

by equation (1), for low values of current, by equation (2).

243. As an example are shown in Fig. 178 the calculated

curves of an alternating arc between hard carbons (or carbides) ,

for the constants,'

Q
= 30 VoltS,

c = 40,

r = 70 ohms.
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The curve I represents the arc conduction, following equation

(1),

e = 30 + -~L
Vt

and the curve II represents the conduction through the (sta-

tionary) residual vapor, by equation (2), near the zero points,

A and D
}
of the current,

e = 70 i.

As seen, from A to B the voltage varies approximately pro-

portionally with the current. At B the arc starts, and the vol-

\]D

FIG. 178.

tage drops with the further increase of current, and then rises

again with the decreasing current, until at C, the intersection

point between curves I and II, the arc extinguishes and the

voltage follows curve II, until at E the arc starts again. The
two sharp peaks of the curve thus represent respectively the

starting and the extinction of the arc.

Since the high values of voltage near zero current lower and the

low values of voltage near maximum current raise the value of
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the current, the current wave does not remain a sine wave, if

the arc voltage is an appreciable part of the total voltage, but

the current wave becomes peaked, with flat zero, as expressed

approximately by a third harmonic in phase with the funda-

mental. The current wave in Fig. 178 so has been assumed as

i = 13 cos + 2 cos 3 0.

From Fig. 178 follows:

effective value of current, 9.30 amp.,
effective value of voltage, 47.2 volts;

hence, volt-amperes consumed by the arc, 439 volt-amp.; and,

by averaging the products of the instantaneous values of volts

and amperes,

power consumed in the arc, 388 watts;

hence,

power-factor, 77 per cent.

If the resistance, r, of the residual arc-vapor is lower, as by
the use of softer carbons, for instance, given by

r = 30 ohms,

as shown by the dotted curve, II', in Fig. 178, the voltage peaks

are greatly cut down, giving a lesser wave-shape distortion, and

so,

effective value of voltage, 43.1 volts,

volt-amperes in arc, 395 volt-amp.,

watts in arc, 335 watts,

hence,

power-factor, 85 per cent.

Comparing Fig. 178 with 177 shows that 178 fairly well approxi-

mates 177, except that in Fig. 177 the second peak is lower than

the first. This is due to the lower resistance, r, of the residual

vapor immediately after the passage of the arc than before the

starting of the arc. Fig. 177 also shows a decrease of resistance,

r, immediately before starting, or after extinction of the arc,

which may be represented by some expression like

r = r i-b
,

where b < 1,

but which has not been considered in Fig. 178.
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The softer the carbons, the more is the latter effect appreciable

and the peaks rounded off, thus causing the curve to approach
the appearance of Fig. 176, while with metal arcs, where r is

very high, the peaks, especially the first, become very sharp
and high, frequently reaching values of several thousand volts.

Further discussion on the effect of the arc see "Theory and

Calculation of Electric Circuits."

244. One of the most important sources of wave-shape dis-

tortion is the presence of iron in a magnetic circuit. The mag-
netic induction in iron, and therewith the magnetic flux, is not

proportional to the magnetizing force or the exciting current,

but the magnetic induction and the magnetizing force are related

to each other by the hysteresis cycle of the iron, as discussed in

Chapter XII. In an iron-clad magnetic circuit, the magnetic

FIG. 179.

flux and the current, therefore, cannot both be sine waves; if the

magnetic flux and therefore the generated e.m.f. are sine waves,
the current \liffers from sine wave-shape, while if a sine wave of

current is sent through the circuit, the magnetic flux and the

generated e.m.f. cannot be sine waves.

A. Sine Wave of Voltage

Let a sine wave of e.m.f. be impressed upon an iron-clad

reactance coil, or a primary coil of a transformer with open

secondary circuit. Neglecting the ohmic resistance of the

circuit, that is, assuming the generated e.m.f. as equal or

practically equal to the impressed e.m.f., the voltage consumed

by the generated e.m.f. and therewith the magnetic flux are

sine waves, as represented by E and B in Fig. 179. The cur-
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rent which produces this magnetic flux, B, and so the voltage,

E, then is derived point by point from B, by the hysteresis cycle
of the iron. With the hysteresis cycle given in Fig. 180, the

current then has the wave-shape given as / in Fig. 179, that is,

greatly differs from a sine wave. This distortion of the current

wave is mainly due to the bend of the magnetic characteristic,

that is, the magnetic saturation, and not to the energy loss or

the area of the curve. This is seen by resolving the current wave,

/, into two components: an energy component, i', in phase with

FIG. 180.

the e.m.f., e = E sin
<f>,

and a wattless component, i", in quadra-
ture with E, and in phase with B. These components are calcu-

lated as

and

t -

where i+ and &V-0 are the instantaneous values of the current, I,

at the angles <f> and w
<j>, respectively.

These components, the hysteresis power current, i', and the

reactive magnetizing current, i"
,

are plotted in Fig. 181 and

show that i' is nearly a sine wave, while i" is greatly distorted

and peaked.
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The total current, /, derived by the hysteresis cycle, Fig. 180,

from the magnetic flux,

B = BQ COS 0,

can be resolved into an infinite series of harmonic waves, that is,

a trigonometric or Fourier series of the form:

i = a\ cos + as cos 3 + a& cos 50+. . . + an cos n<f> + , . .

+ 61 sin + 6 3 sin 3 + 6 5 sin 5 +. . . + bn sin n0 + . . .

or of the form :

i = GI cos (0 0i) + c 3 cos (3 3) + c 5 cos (5 6)

+ , . + cn cos (nct> On) + .

where

FIG. 181.

tan e r

The coefficients an and 6n are determined by the definite

integrals:
1

2 .

* cos n<f>d<j>
= 2 X ct^g cos

2 /'
6n = -

I i sin ?^0d0 = 2 X avg (^sinn0)
ir

;

TT/O

that is, by multiplying the instantaneous values of i, as given

numerically, by cos n0 and sin n0, respectively, and then

averaging.

J See "Engineering Mathematics."
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Just as in most investigations dealing with alternating currents,

not the fundamental sine wave, but the fundamental sine wave

together with all its higher harmonics, that is, the total wave, is

of importance; so also when dealing with the higher harmonics,

frequently not the individual higher harmonic sine wave is of

importance, but the higher harmonic together with all of its

higher harmonics. For instance, when dealing with the disturb-

ances caused by the third harmonic in a three-phase system, the

third harmonic together with all its higher harmonics or over-

tones, as the ninth, fifteenth, twenty-first, etc., comes in consid-

eration, that is, all the components which repeat after one-third

cycle. The higher harmonic then appears as a distorted wave,

including its higher harmonics.

To determine, from the instantaneous values of a distorted

wave, the instantaneous values of its nth harmonic distorted

wave, that is, the nth harmonic together with its overtones, of

order 3 n, 5 n, 7 n, etc., the average is taken of n instantaneous

values of the total wave (or any component thereof, which

includes the nth harmonic), differing from each other in phase by

-
period. That is, it is

n-l

This method is based on the relations:

n ~ l

i ,

2inr\2 K cos I md> H 1
= n cos

V n /

1

/ 2/C7T\
* sm I m(f) H )

= n sm m<f>,
\ n I

if m = n or if m is a multiple of n; otherwise these sums =
0,

where m and n are integer numbers.

245. In .this manner the wave of exciting current, 7, of Fig.

179 is resolved, in Fig. 182, into the fundamental sine wave, ii,

and the higher harmonics, iz, i$, ii, which are general waves, that

is, include their higher harmonics.

Analytically, it can be represented by

i = 8.857 cos (0 + 37.6) + 1.898 cos 3 (0 + 4.1)

+ 0.585 cos 5 (0 - 1.7) + 0.319 cos 7 (0
- 3.2)

+ 0.158 cos 9 (<
- 2.5) + . .

where B = 10,000 cos < is the wave of magnetic induction.
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The equivalent sine wave of above current wave is

IQ = 9.104 cos (0 - 36.3).

In this case of the distortion of a current wave by an iron-clad

reactance coil or transformer, with a sine wave of impressed

e.m.f., it is, from the above equation of the current wave,

Effective value of the total current . . .

'

. . . . 6 . 423

Effective value of its fundamental sine wave . . . 6 . 27

Effective value of the sum of all its higher harmonics 1 . 43.

That is, the effective value of all the harmonics is 22.3 per cent, of

the effective value of the total current.

u

nX

\

V \\

\
^

FIG. 182.

B. Sine Wave of Current

246. If a sine wave of current exists through an iron-clad

magnetic circuit, as, for instance, an iron-clad reactance coil or

transformer connected in series to a circuit traversed by a sine

wave, the potential difference at the terminals of the reactance

cannot be a sine wave, but contains higher harmonics.

From the sine wave of current

i I cos 0,

follows by the hysteresis cycle, Fig. 180, the wave of magnetism.
This is not a sine wave, but hollowed out on the rising, humped
on the decreasing side, that is, has a distortion about opposite
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from that of the current wave in Fig. 179; the wave of magnetism
has the maximum at the same angle, 0, as the current, but passes
the zero much later than the current.

From the wave of magnetism follows the wave of generated

e.m.f., and so (approximately, that is, neglecting resistance) of

terminal voltage, e, at the reactance, since e is proportional to -Tr-
Ct

It is plotted as E in Fig. 183, and resolved into its harmonics

in the same manner as the current wave in A.

FIG. 183.

As seen, with a sine wave of current traversing an iron-clad

reactance, the e.m.f. wave is very greatly distorted, and the

maximum value of the distorted e.m.f. wave is more than twice

the maximum of its fundamental sine wave.

Denoting the current wave by,

i = 10 sin (<f> + 30),

the e.m.f. wave in Fig. 183 is represented by

e = 11.67 cos (0 + 2.5) + 6.64 cos 3 (0
- 1.13)

+ 3.24 cos 5 (0
- 2.4) + 1.8 cos 7 (0

- 1.53) +
1.16 cos 9 (0

- 0.5) + 0.80 cos 11 (0
- 2)

+ 0.53 cos 13 (0
- 2) + 0.19 cos 15 (0 - 1) + . . .

that is, all the harmonics are nearly in phase with each other, so

accounting for the very steep peak. It is
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Effective value of total wave .......... 9.91

.Effective value of its fundamental sine wave . . . 8 . 25

Effective value of the sum of all its higher harmonics 5 . 48

that is, the effective value of all the higher harmonics is 55.3 per
cent, of the effective value of the total wave.

The impedance of this iron-clad reactance, with a sine wave
current of 7.07 effective, so is

while ,the same reactance, with a sine wave e.m.f. of 7.07

effective, in A, gives the impedance,

The conclusion is that an iron-clad magnetic circuit is not

suitable for a reactor, since even below saturation (as above

assumed) it produces very great wave-shape distortion.

As discussed before, the insertion of even a small air-gap into

the magnetic circuit makes the current wave nearly coincide in

phase and in shape with the wave of magnetism.

C. Three-phase Circuits

247. The wave-shape distortion in an iron-clad magnetic
circuit has an important bearing on transformer connections in

three-phase circuits.

The e.m.fs. and the currents in a three-phase system are dis-

placed from each other in phase by one-third of a period or 120.

Their third harmonics, therefore, differ by 3 X 120, or a com-

plete period, that is, are in phase with each other. That is, what-

ever third harmonics of e.m.f. and of current may exist in a

three-phase system must be in phase with each other in all

three phases, or, in other words, for the third harmonics the

three-phase system is single-phase.

The sum of the three e.m.fs. between the lines of a three-phase

system (A voltages) is zero. Since their third harmonic would

be in phase with each other, and so add up, it follows:

The voltages between the lines of a three-phase system, or A

voltages, cannot contain any third harmonic or its overtones

(ninth, fifteenth, twenty-first, etc., harmonics).

Since in a three-wire, three-phase system the sum of the three
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currents in the line is zero, but their third harmonics would be in

phase with each other, and their sum, therefore, not zero, it

follows :

The currents in the lines of a three-wire, three-phase system,
or Y currents, cannot contain any third harmonic.

Third harmonics, however, can exist in the Y voltage or voltage

between line and neutral of the system, and since the third har-

monics are in phase with each other, in this case, a potential

difference of triple frequency exists between the neutral of the

system and all three phases as the other terminal, that is, the

whole system pulsates against the neutral at triple frequency.
Third harmonics can also exist in the currents between the

lines, or A currents. Since the two currents from one line to the

other two lines are displaced 60 from each other, their third

harmonics are in opposition and, therefore, neutralize. That is,

the third harmonics in the A currents of a three-phase system
do not exist in the Y currents in the lines, but exist only in a

local closed circuit.

Third harmonics can exist in the line currents in a four-wire,

three-phase system, as a system with grounded neutral. In this

case the third harmonics of currents in the lines return jointly

over the fourth or neutral wire, and even with balanced load on

the three phases, the neutral wire carries a current which is of

triple frequency.

248. With a sine wave of impressed e.m.f. the current in an

iron-clad circuit, as the exciting current of a transformer, must

contain a strong third harmonic, otherwise the e.m.f. cannot

be a sine wave. Since in the lines of a three-phase system the

third harmonics of current cannot exist, interesting wave-shape
distortions thus result in transformers, when connected to a three-

phase system in such a manner that the third harmonic of the

exciting current would have to enter the line as Y current, and

so is suppressed.

For instance, connecting three iron-clad reactors, as the

primary coils of three transformers with their secondaries

open-circuited in star or Y connection into a three-phase

system, with a sine wave of e.m.f., e, impressed upon the lines.

Normally, the voltage of each transformer should be a sine wave
/>

also, and equal -j=- This, however, would require that the
V 3

current taken by the transformer as exciting current contains a
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third harmonic. As such a third harmonic cannot exist in a

three-phase circuit, the wave of magnetism cannot be a sine wave,
but must contain a third harmonic, about opposite to that which

was suppressed in the exciting current. The e.m.f. generated

by this magnetism, and therewith the potential difference at

the transformer or Y voltage, therefore, must also contain a

third harmonic, and its overtones, three times as great as that of

the magnetism, due to the triple frequency.

With three transformers connected in Y into a three-phase

system with open secondary circuit, we have, then, with a sine

wave of e.m.f. impressed between the three-phase lines, the

conditions:

The voltage at the transformers, or Y voltage, cannot be a sine

wave, but must contain a third harmonic and its overtones, but

can contain no other harmonics, since the other harmonics, as

the fifth, seventh, etc., would not eliminate by combining two

Y voltages to the A voltage or line voltage, and the latter was

assumed as sine wave.

The exciting current in the transformers cannot contain any
third harmonic or its overtones, but can contain all other

harmonics.

The magnetic flux is not a sine wave, but contains a third

harmonic and its overtones, corresponding to those of the Y
voltage, but contains no other harmonics, and is related to the

exciting current by the hysteresis cycle.

Herefrom then the wave-shapes of currents, magnetism and

voltage can be constructed. Obviously, since the relation

between current and magnetism is merely empirical, given by
the hysteresis cycle, this cannot be done analytically, but only

by the calculation or construction of the instantaneous values

of the curves.

249. For the hysteresis cycle in Fig. 180, and for a system of

transformers connected in Y, with open secondary circuit, into

a three-phase system with a sine wave of e.m.f. between the

lines, the curves of exciting current, magnetic flux and voltage

per transformer, or between lines and neutral, are constructed in

Fig. 184.

i is the exciting current of the transformer, and contains all

the harmonics, except the third and its multiples. It is given

by the equation:

i = 8.28 sin (0 + 30.8) - 0.71 sin (5 <f>

- 17.2) + .

'

. .
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B is the magnetic flux density in the transformer. It contains

only the third harmonic and its multiples, but no other harmonics,
and is given by the equation:

B = 10.0 sin + 1.38 sin (3 <f>
- 9.2) + 0.045 sin 9 + . . .

e is the potential difference of the transformer terminals, or

voltage between the three-phase lines and the transformer neu-

tral. It contains the third harmonic and its multiples, but no

other harmonics, and is given by the equation:

e = 10.0 cos < + 4.14 cos (3 <
- 9.2) -j- 0.405 cos 9 + .

t

\

FIG. 184.

The effective value of the voltage is 0.625 e, and the maximum
value is 1.175 E, where E = supply voltage or A voltage.

While with a sine wave the effective value would be

and the maximum value

== 0.577 E,

= 0.815
V3

that is, by the suppression of the third harmoniS of exciting cur-

rent in the three-phase system, the effective value of the voltage

per transformer, or voltage between three-phase lines and neutral

(or ground, if the neutral is grounded) has been increased by
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8.5 per cent., the maximum value by 44.6 per cent., and the

voltage wave has become very peaked, by a pronounced third

harmonic of an effective value of 0.24 E that is, 38.5 per cent,

of the effective value of the total wave.

The very high peak of e.m.f. produced by this wave-shape
distortion is liable to be dangerous in high-potential, three-

phase systems by increasing the strain on the insulation between

lines and ground, and leading to resonance phenomena with the

third harmonic.

The maximum value of the distorted wave of magnetism is

8.89, while with a sine wave it would be 10.0, that is, the maxi-

mum of the wave of magnetism has been reduced by 11.1 per

cent., and the core loss of the transformer so by about 17 per

cent.

250. Assuming now that in such transformers, connected

with their primaries in Y into a three-phase circuit, the seconda-

ries are connected in A. The third harmonics of e.m.f., generated
in the three transformer secondaries, then are in series in short-

circuit, thus produce a local current in the secondary transformer

triangle. This current is of triple frequency, and hence supplies

the third harmonic of exciting .current, which was suppressed in

the primary, and thereby eliminates the third harmonic of mag-
netism and of e.m.f., which results from the suppression of the

third harmonic of exciting current, and so limits itself. That is,

connecting the transformer secondaries in A, the wave-shape dis-

tortion disappears, and voltage and magnetism are again sine

waves, and the exciting current is that corresponding to a sine

wave of magnetism, except that it is divided between primary
and secondary; the third harmonic of the exciting current does

not exist in the primary, but is produced by induction in the

secondary circuit. Obviously, in this case the magnetic flux

and the voltage are not perfect sine waves, but contain a slight

third harmonic, which produces in the secondary the triple-

frequency exciting current.

If the primary neutral of the transformers is connected to a

fourth wire, in a four-wire, three-phase system or three-phase

system with grounded neutral, and this fourth wire leads back

to the generator neutral, or a neutral of a transformer in which

the triple-frequency current can exist, that is, in which the

secondary is connected in A, the wave-shape distortion also

disappears.
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It follows herefrom that in the three-phase system attention

must be paid to provide a path for the third harmonic of the

transformer exciting current, either directly or inductively,

otherwise a serious distortion of the e.m.f. wave of the trans-

formers occurs. (See
"
Theoretical Elements of Electrical

Engineering," Chapter X.)



CHAPTER XXVI

EFFECTS OF HIGHER HARMONICS

251. To elucidate the variation in the shape of alternating

waves caused by various harmonics, in Figs. 185 and 186 are

shown the wave-forms produced by the superposition of the

FIG. 185.

triple and the quintuple harmonic upon the fundamental sine

wave.

In Fig. 185 is shown the fundamental sine wave and the com-

plex waves produced by the superposition of a triple harmonic

of 30 per cent, the amplitude of the fundamental, under the rela-

24 369
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tive phase displacments of 0, 45, 90, 135, and 180, repre-

sented by the equations:

sin j8

sin ]8
- 0.3 sin 3

sin - 0.3 sin (3
- 45)

sin 0.3 sin (3
- 90)

sin - 0.3 sin (3
- 135)

sin - 0.3 sin (30- 180).

Dfstortion of Wave Shape

by Quintuple Harmonic

Sin./?-2siru(5/?-,6) >

FIG. 186.

As seen, the effect of the triple harmonic is, in the first figure,

to flatten the zero values and point the maximum values of the

wave, giving what is called a peaked wave. With increasing

phase displacement of the triple harmonic, the flat zero rises and

gradually changes to a second peak, giving ultimately a flat-top

or even double-peaked wave with sharp zero. The intermediate

positions represent what is called a saw-tooth wave.

In Fig. 186 are shown the fundamental sine wave and the
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complex waves produced by superposition of a quintuple har-

monic of 20 per cent, the amplitude of the fundamental, under the

relative phase displacement of 0, 45, 90, 135, 180, represented

by the equations:

sin (3

sin 0.2 sin 5

sin - 0.2 sin (50- 45)
sin - 0.2 sin (50- 90)
sin - 0.2 sin (5

- 135)
sin - 0.2 sin (50 - 180).

FIG. 187. Some characteristic wave-shapes.

The quintuple harmonic causes a flat-topped or even double-

peaked wave with flat zero. With increasing phase displacement

the wave becomes of the type called saw-tooth wave also. The
flat zero rises and becomes a third peak, while of the two former
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peaks, one rises, the other decreases, and the wave gradually

changes to a triple-peaked wave with one main peak, and a sharp
zero.

As seen, with the triple harmonic, flat top or double peak
coincides with sharp zero, while the quintuple harmonic flat top
or double peak coincides with flat zero.

Sharp peak coincides with flat zero in the triple, with sharp
zero in the quintuple harmonic. With the triple harmonic, the

saw-tooth shape appearing in case of a phase difference between
fundamental and harmonic is single, while with the quintuple
harmonic it is double.

Thus in general, from simple inspection of the wave-shape,
the existence of these first harmonics can be discovered. Some
characteristic shapes are shown in Fig. 187.

Flat top with flat zero,

sin - 0.15 sin 3 - 0.10 sin 5 0.

Flat top with sharp zero,

sin - 0.225 sin (30- 180) - 0.05 sin (5 ft
- 180).

Double peak, with sharp zero,

sin 0-0.15 sin (3
- 180) - 0.10 sin 5 0.

Sharp peak with sharp zero,

sin - 0.15 sin 3 - 0.10 sin (5
- 180).

For further discussion of wave-shape distortion by harmonics

see
"
Engineering Mathematics."

252. Since the distortion of the wave-shape consists in the

superposition of higher harmonics, that is, waves of higher fre-

quency, the phenomena taking place in a circuit supplied by such

a wave will be the combined effect of the different waves.

Thus in a non-inductive circuit the current and the potential

difference across the different parts of the circuit are of the same

shape as the impressed e.m.f. If inductive reactance is inserted

in series with a non-inductive circuit, the self-inductive reactance

consumes more e.m.f. of the higher harmonics, since the reactance

is proportional to the frequency, and thus the current and the

e.m.f. in the non-inductive part of the circuit show the higher

harmonics in a reduced amplitude. That is, self-inductive react-

ance in series with a non-inductive circuit reduces the higher

harmonics or smooths out the wave to a closer resemblance to

sine-shape. Inversely, capacity in series to a non-inductive

circuit consumes less e.m.f. at higher than at lower frequency,

and thus makes the higher harmonics of current and of potential
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difference in the non-inductive part of the circuit more pro-

nounced intensifies the harmonics.

Self-induction and capacity in series may cause an increase of

voltage due to complete or partial resonance with higher har-

monics, and a discrepancy between volt-amperes and watts,

without corresponding phase displacement, as will be shown
hereafter.

253. In long-distance transmission over lines of noticeable

inductive and condensive reactance, rise of voltage due to reso-

nance may occur with higher harmonics, as waves of higher fre-

quency, while the fundamental wave is usually of too low a

frequency to cause resonance.

An approximate estimate of the possible rise by resonance with

various harmonics can be obtained by the investigation of a

numerical example. Let in a long-distance line, fed by step-up
transformers at 60 cycles,

The resistance drop in the transformers at full-load = 1 per cent.

The reactance voltage in the transformers at full-load = 5 per
cent, with the fundamental wave.

The resistance drop in the line at full-load = 10 per cent.

The reactance voltage in the line at full-load = 20 per cent, with

the fundamental wave.

The capacity or charging current of the line = 20 per cent. -of the

full-load current, /, at the frequency of the fundamental.

The line capacity may approximately be represented by a

condenser shunted across the middle of the line. The e.m.f. at

the generator terminals, E, is assumed as maintained constant.

The e.m.f. consumed by the resistance of the circuit from

generator terminals to condenser is

IT = 0.06 E,

or,

r = 0.06
j-

The reactance e.m.f. between generator terminals and con-

denser is, for the fundamental frequency,

Ix = 0.15#,

or,

x = 0.15 -
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thus the reactance corresponding to the frequency (2 A; I)/ of

the higher harmonic is

x (2k- 1)
= 0.15 (2 k- l)j-

The capacity current at fundamental frequency is,

i = 0.27;

hence, at the frequency (2k I)/,

i = 0.2 (2 k - 1) e' ^
if

e' = e.m.f. of the (2 k l)th harmonic at the condenser,
e = e.m.f. of the (2 k l)th harmonic at the generator terminals.

The e.m.f. at the condenser is

e' = v^^72r 2 + ix (2k -
1);

hence, substituted,

e' 1

Vl -
0.059856(2 k - I)

2 + 0.0009 (2 A;
-

I)
4

the rise of voltage by inductive and condensive reactance.

Substituting,

k = 1 2 3 4 5 6

or, 2k - 1 = 1 3 5 7 9 11

and a = 1.03 1.36 3.76 2.18 0.70 0.38

That is, the fundamental will be increased at open circuit by
3 per cent., the triple harmonic by 36 per cent., the quintuple
harmonic by 276 per cent., the septuple harmonic by 118 per

cent., while the still higher harmonics are reduced.

The maximum possible rise will take place for

that is, at a frequency / = 346, and a = 14.4.

That is, complete resonance will appear at a frequency between

quintuple and septuple harmonic, and would raise the voltage at

this particular frequency 14.4-fold.

If the voltage shall not exceed the impressed voltage by more

than 100 per cent., even at coincidence of the maximum of the

harmonic with the maximum of the fundamental,
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the triple harmonic must be less than 70 per cent, of the

fundamental,
the quintuple harmonic must be less than 26.5 per cent, of the

fundamental,
the septuple harmonic must be less than 46 per cent, of the

fundamental.

The voltage will not exceed twice the normal, even at a fre-

quency of complete resonance with the higher harmonic, if none

of the higher harmonics amounts to more than 7 per cent, of the

fundamental. Herefrom it follows that the danger of resonance

in high-potential lines is frequently overestimated, since the

conditions assumed in this example are rather more severe than

found in lines of moderate length, the capacity current of such

line very seldom reaching 20 per cent, of the main current.

254. The power developed by a complex harmonic wave in a

non-inductive circuit is the sum of the powers of the individual

harmonics. Thus if upon a sine wave of alternating e.m.f.

higher harmonic waves are superposed, the effective e.m.f. and

the power produced by this wave in a given circuit or with a given
effective current are increased. In consequence hereof alterna-

tors and synchronous motors of iron-clad unitooth construction

that is, machines giving waves with pronounced higher

harmonics may give with the same number of turns, on the

armature, and the same magnetic flux per field-pole at the same

frequency, a higher output than machines built to produce sine

waves.

255. This explains an apparent paradox:
If in the three-phase star-connected generator with the mag-

netic field constructed as shown diagrammatically in Fig. 188

the magnetic flux per pole = 3>, the number of turns in series

per circuit = n, the frequency =
/, the e.m.f. between any

two collector rings is

E = V2 TT/ 2 n$ 10-8
,

since 2 n armature turns simultaneously interlink with the

magnetic flux, $.

The e.m.f. per armature circuit is

hence the e.m.f. between collector rings, as resultant of two

e.m.fs., e, displaced by 60 from each other, is

E = e-v/3
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while the same e.m.f. was found from the number of turns, the

magnetic flux, and the frequency by direct calculation to be

equal to 2 e] that is, the two values found for the same e.m.f.

have the proportion \/3'2 = 1 : 1.154.

This discrepancy is due to the existence of more pronounced

higher harmonics in the wave e than in the wave E = e X \/3>
which have been neglected in the formula

e = \/2irfn3>W-
&

.

Hence it follows that, while the e.m.f. between two collector

rings in the machine shown diagrammatically in Fig. 188 is only

FIG. 188. Three-phase star-connected alternator.

e X \/3j by massing the same number of turns in one slot

instead of in two slots, we get the e.m.f. 2e, or 15.4 per cent,

higher e.m.f., that is, larger output.
It follows herefrom that the distorted e.m.f. wave of a unitooth

alternator is produced by lesser magnetic flux per pole that is,

in general, at a lesser hysteretic loss in the armature or at higher
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efficiency than the same effective e.m.f. would be produced
with the same number of armature turns if the magnetic dispo-

sition were such as to produce a sine wave.

256. Inversely, if such a distorted wave of e.m.f. is impressed

upon a magnetic circuit, as, for instance, a transformer, the wave
of magnetism in the primary will repeat in shape the wave of

magnetism interlinked with the armature coils of the alternator,

and consequently with a lesser maximum magnetic flux the

same effective counter e.m.f. will be produced, that is, the same

power converted in the transformer. Since the hysteretic loss

in the transformer depends upon the maximum value of mag-
netism, it follows that the hysteretic loss in a transformer is less

with a distorted wave of a unitooth alternator than with a sine

wave.

257. From another side the same problem can be approached :

If upon a transformer a sine wave of e.m.f. is impressed, the

wave of magnetism will be a sine wave also. If now upon the

sine wave of e.m.f. higher harmonics, as sine waves of triple,

quintuple, etc., frequency are superposed in such a way that the

corresponding higher harmonic sine waves of magnetism do not

increase the maximum value of magnetism, or even lower it by a

coincidence of their negative maxima with the positive maximum
of the fundamental, in this case all the power represented by
these higher harmonics of e.m.f. will be transformed without an

increase of the hysteretic loss, or even with a decreased hysteretic

loss.

Obviously, if the maximum of the higher harmonic wave of

magnetism coincides with the maximum of the fundamental, and

thereby makes the wave of magnetism more pointed, the hyster-

etic loss will be increased more than in proportion to the in-

creased power transformed, i.e., the efficiency of the transformer

will be lowered.

That is, some distorted waves of e.m.f. are transformed at a

lesser, some at a larger, hysteretic loss than the sine wave, if the

same effective e.m.f. is impressed upon the transformer.

The unitooth alternator wave and the first wave in Fig. 226

belong to the former class; the waves derived from continuous-

current machines, tapped at two equidistant points of the

armature, frequently, to the latter class.

258. Regarding the loss of energy by Foucault or eddy currents,

this loss is not affected by distortion of wave-shape, since the
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e.m.f. of eddy currents, like the generated e.m.f., is proportional

to the secondary e.m.f.
;
and thus at constant impressed primary

e.m.f. the power consumed by eddy currents bears a constant

relation to the output of the secondary circuit, as obvious, since

the division of power between the two secondary circuits the

eddy-current circuit and the useful or consumer circuit is

unaffected by wave-shape or intensity of magnetism.
In high-potential lines, distorted waves whose maxima are

very high above the effective values, as peaked waves, are

objectionable by increasing the strain on the insulation. The

striking-distance of an alternating voltage depends upon the

maximum value, except at extremely high frequencies, such as

oscillating discharges. In the latter, the very short duration of

the voltage peak may reduce the disruptive strength, as dielectric

disruption requires energy, that is, not only voltage, but time

also.



CHAPTER XXVII

SYMBOLIC REPRESENTATION OF GENERAL
ALTERNATING WAVES

259. The vector representation,

A = a 1 + ja
11 = a (cos 6 + j sin 6)

of the alternating wave,

A = aQ cos (0 6)

applies to the sine wave only.

The general alternating wave, however, contains an infinite

series of terms, of odd frequencies,

A = Ai cos ( 0- 0i) + A 3 cos (30 3) + A 5 cos (5
-

5)+
thus cannot be directly represented by one complex vector

quantity.

The replacement of the general wave by its equivalent sine

wave, as before discussed, that is, a sine wave of equal effective

intensity and equal power, while sufficiently accurate in many
cases, completely fails in other cases, especially in circuits con-

taining capacity, or in circuits containing periodically (and in

synchronism with the wave) varying resistance or reactance (as

alternating arcs, reaction machines, synchronous induction

motors, oversaturated magnetic circuits, etc.).

Since, however, the individual harmonics of the general alter-

nating wave are independent of each other, that is, all products
of different harmonics vanish, each term can be represented by a

complex symbol, and the equations of the general wave then are

the resultants of those of the individual harmonics.

This can be represented symbolically by combining in one

formula symbolic representations of different frequencies, thus,

1 The index 2n 1 in the S sign denotes that only the odd values of

n are considered. If the wave contained even harmonics, the even values

of n would also be considered, and the index in the S sign would be n.

379
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where

and the index of the jn merely denotes that the j's of differ-

ent indices, n, while algebraically identical, physically represent

different frequencies, and thus cannot be combined.

The general wave of e.m.f. is thus represented by

E = &-!<.* +**.")
i

the general wave of current by

I = S2-1(V +jnin
11

).

If

Zi = r + j (xm + z + xc)

is the impedance of the fundamental harmonic, where

xm is that part of the reactance which is proportional to the

frequency (inductance, etc.).

XQ is that part of the reactance which is independent of the

frequency (mutual inductance, synchronous motion, etc.).

xc is that part of the reactance which is inversely propor-
tional to the frequency (capacity, etc.).

The impedance for the nth harmonic is

Z = r + jn (nx

This term can be considered as the general symbolic expression

of the impedance of a circuit of general wave-shape.
Ohm's law, in symbolic expression, assumes for the general

alternating wave the form

=
or,

E = IZor, S2-i (e,
1 +jc.) = 22 1

\r + j. (nxm +% +^
j j

\ 74

E . I xc \ en +jnen
11

OTZn = r+

The symbols of multiplication and division of the terms, E, I, Z,
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thus represent, not algebraic operation, but multiplication and

division of corresponding terms of E, I, Z, that is, terms of the

same index, n, or, in algebraic multiplication and division of the

series, E, I, all compound terms, that is, terms containing two

different n's, vanish.

260. The effective value of the general wave,
a = Ai cos (< 00 + A 3 cos (3 3) + A b cos (5 2 ) +. .

is the square root of the sum of mean squares of individual har-

monics,

A =

Since, as discussed above, the compound terms of two different

indices, n, vanish, the absolute value of the general alternating

wave,

A = 22-:

is thus,

A = /T.**_ t ~t~ ^n

which offers an easy means of reduction from symbolic to

absolute values.

Thus, the absolute value of the e.m.f.,

E = S2n-i(eni+jnenii),
i

IS

the absolute value of the current,

is

J22n-l(t r

261. The double frequency power (torque, etc.) equation of

the general alternating wave has the same symbolic expression

as with the sine wave,
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P = [El]

= P 1 '+ jP*

i

where

The jn enters under the summation sign of the reactive or

"wattless power," P', so that the wattless powers of the different

harmonics cannot be algebraically added.

Thus,
The total "true power" of a general alternating-current circuit

is the algebraic sum of the powers of the individual harmonics.

The total "reactive power" of a general alternating-current

circuit is not the algebraic, but the absolute sum of the wattless

powers of the individual harmonics.

Thus, regarding the reactive power as a whole, in the general

alternating circuit no distinction can be made between lead and

lag, since some harmonics may be leading, others lagging.

The apparent power, or total volt-amperes, of the circuit is

pa = El =
i i

The power-factor of the circuit is,

^n-i^HV +P 1
i

The term "
inductance factor," however, has no meaning any

more, since the reactive powers of the different harmonics are not

directly comparable.
The quantity

qQ
= Vl ~p 2

,...._ . . reactive power
has no physical S1gmficance, and is not

total apparent power
-
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The term

m r 3 EI

vo ,3 n

where
en

ll
in

l - en
l
in

11

consists of a series of inductance factors, qn ,
of the individual

harmonics.

CO

As a rule, if q
2

2)2n-igfn
2
?

i

p
2 + q

2 < 1,

for the general alternating wave, that is, q differs from

The complex quantity,

Pa

"
El El

i

takes in the circuit of the general alternating wave the same

position as power-factor and inductance factor with the sine wave.

p
V =

p- may be called the "circuit-factor."

It consists of a real term, p, the power-factor, and a series of

imaginary terms, jnqn ,
the inductance factors of the individual

harmonics.

The absolute value of the circuit-factor,

v

as a rule, is < 1.
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262. Some applications of this symbolism will explain its

mechanism and its usefulness more fully.

First Example. Let the e.m.f.,

5

E = Z2-i(en
i + jeir

),

i

be impressed upon a circuit of the impedance,

Z = r + jn (nx
m - J)

-
10+j.(lOn- f)

that is, containing resistance, r, inductive reactance xm and con-

densive reactance xc in series.

Let

ei
1 = 720 ei

11 = - 540

es
1 = 283 e3

u = 283

65
1 = - 104 e b

n = - 138

or,

ei = 900 tan B l
= 0.75

63 = 400 tan 3
= - 1.0

6 5
= 173 tan 5

= - 1.33

It is thus in symbolic expression,

Zi = 10 - 80 ji 0i = 80.6

Z3
= 10 z3

= 10.0

Z 5
= 10 + 32J5 25 = 33.5,

and e.m.f.,

E = (720 - 540 j,) + (283 + 283 J3) + (
- 104 - 138 J 5),

or, absolute,

E = 1000,

and current,

E _ 720 - 540 j\ 283 + 283 J3
- 104 - 138 j b

'
Z

=

10-SOji 10 10 + 32J5
= (7.76 + 8.04JO + (28.3 + 28.3 J3) + (

- 4.86 + 1.73 J5)

or, absolute,

/ = 41.85,

of which is of fundamental frequency,

/i = 11.15

of triple frequency,

73
= 40
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of quintuple frequency,
7 5

= 5.17.

The total apparent power of the circuit is

pa = El = 41,850.

The true power of the circuit is,

pi = [El}
1 = 1240 + 16,000 + 270,

= 17,510,

the reactive power,

jP>'
= j[EIV = -

10,000 ji + 850 J 5 ;

thus, the total power,

P = 17,510
-

10,000 ji + 850 j 5 .

That is, the reactive power of the first harmonic is leading,

that of the third harmonic zero, and that of the fifth harmonic

lagging.

17,510 = Pr, as obvious.

The circuit-factor is,

V t \&1~
Pa

~
El

= 0.418 - 0.239 ji 4- 0.0203 j 5 ,

or, absolute, __
v = V0.418 2 + 0.239 2 + 0.0203 2

.

= 0.482.

The power-factor is

p = 0.418.

The inductance factor of the first harmonic is q\
= 0.239,

that of the third harmonic <? 3
=

0, and of the fifth harmonic

g 5
= + 0.0203.

Considering the waves as replaced by their equivalent sine

waves, from the sine wave formula,

p
2 + 9o

2 -
1,

the inductance factor would be,

q
= 0.914,

and the phase angle,

25
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giving apparently a very great phase displacement, while in

reality, of the 41.85 amp. total current, 40 amp. (the current of

the third harmonic) are in phase with their e.m.f.

We thus have here a case of a circuit with complex harmonic

waves which cannot be represented by their equivalent sine

waves. The relative magnitudes of the different harmonics in

the wave of current and of e.m.f. differ essentially, and the circuit

has simultaneously a very low power-factor and a very low

inductance factor; that is, a low power-factor exists without

corresponding phase displacement, the circuit-factor being less

than one-half.

Such circuits, for instance, are those including alternating

arcs, reaction machines, synchronous induction motors, react-

ances with over-saturated magnetic circuit, high potential lines

in which the maximum difference of potential exceeds the corona

voltage, polarization cells and in general electrolytic conductors

above the dissociation voltage of the electrolyte, etc. Such cir-

cuits cannot correctly, and in many cases not even approximately,
be treated by the theory of the equivalent sine waves, but re-

quire the symbolism of the complex harmonic wave.

263. Second Example. A condenser of capacity, Co = 20 mf . is

connected into the circuit of a 60-cycle alternator giving a wave
of the form,

e = E(cos - 0.10 cos 3 </>

- 0.08 cos 5 </> + 0.06 cos 7 0),

or, in symbolic expression,

E = e(li
- 0.103

- 0.08 5 + 0.06 7).

The synchronous impedance of the alternator is

ZQ = r + jnnxQ
= 0.3 + 5 njn .

What is the apparent capacity, C, of the condenser (as calcu-

lated from its terminal volts and amperes) when connected

directly with the alternator terminals, and when connected

thereto through various amounts of resistance and inductive

reactance?

The condensive reactance of the condenser is

10 6

*< -
2tfCl

- 132 hms '

or, in symbolic expression,

5f
132 .

3n n - n Jn '
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Let Zi = r + jnnx = impedance inserted in series with the

condenser.

The total impedance of the circuit is then

Z = Zo + Zx-jn = (0.3 + r) +j

The current in the circuit is

i OJL
_ r

=

Z
= e

10.
_
(0.3 + r)+j(x- 127) (0.3 + r) + j, (3 x - 29)

0.08 0.06

(0.3 + r) + J5 (5z-1.4)

and the e.m.f. at the condenser terminals,

. xj f 132 J! 4.4 J3

f r) +ji(x - 127) (0.3+r)+j3(3z-29)

"

(03 + r]T-l- J5 (5s- 1.4)
+

(0.3 + r) +J 7 (7a:+ 16.1)

thus the apparent condensive reactance of the condenser is

= >

and the apparent capacity,

c= 106

27T/X1

(a) x = 0: Resistance, r, in series with the condenser. Re-

duced to absolute values it is

1 0.01 0.0064 0.0036

_ _ (0.3+r)+ 16129 (0.3+r)
2+ 841 (0.3+r)

2+1.96 (0.3+r)
2+259

S
~

16129 19.4 __4.45 1.28

(0.3+r)
2+84l"i

"(0.3+r)
2+1.96"

t
"(0.3+r)

2+259

(6) r = 0: Inductive reactance, x, in series with the condenser.

Reduced to absolute values it is

1 . 0.01 0.0064

0.09+(a-127) 2n 0.09+(3a;-29) 2n 0.09+(5:c-1.
"16129 19.4 4.45

0.09+(a;-127)
2
"r
0.09+(3a;-29)

2+ 0.09+(5x-1.4)
0.0036

0.09+(7x+16.1)
2
.

L28

0.09+(7z+16.1) 2
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From ~~i are derived the values of apparent capacity,

1O6
C =

27T/Z!

and plotted in Fig. 189 for values of r and x respectively varying
from to 22 ohms.

As seen, with neither additional resistance nor reactance in

series to the condenser, the apparent capacity with this generator
wave is 84 mf., or 4.2 times the true capacity, and gradually de-

creases with increasing series resistance, to C = 27 mf. = 1.35

times the true capacity at r = 13.2 ohms, or one-tenth the true

capacity reactance. With r = 132 ohms, or with an additional

resistance equal to the condensive reactance, C = 20.2 mf . or only

CAPACITY C = 20 mf IN CIRCUIT OF GENERATOR

=E (1-0.1 -0.08- 0.06) OF IMPEDANCE

ftj,,
WITH RESISTANCE ,r (I)

OR REACTANCE X (II) IN SERIES

9 10 11 12 13 14 15 16 17 18 39 20

FlG. 189.

one per cent, in excess of the true capacity, C
,
and at r =

,

C = 20 mf. or the true capacity.

With reactance, ,
but no additional resistance, r, in series, the

apparent capacity, C, rises from 4.2 times the true capacity at

x =
0, to a maximum of 5.03 times the true capacity, or C =

100.6 mf. at x = 0.28, the condition of resonance of the fifth

harmonic, then decreases to a minimum of 27 mf ., or 35 per cent,

in excess of the true capacity, rises again to 60.2 mf., or 3.01

times the true capacity at x = 9.67, the condition of resonance

with the third harmonic, and finally decreases, reaching 20 mf.,

or the true capacity at x 132, or an inductive reactance equal

to the condensive reactance.
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It thus follows that the true capacity of a condenser cannot

even approximately be determined by measuring volts and

amperes if there are any higher harmonics present in the generator

wave, except by inserting a very large resistance or reactance

in series to the condenser.

264. Third Example. An alternating-current generator of the

wave,
E = 2000 [li + 0.12 3

- 0.23 5
- 0.13 7],

and of synchronous impedance,

ZQ
= 0.3 + 5 njn ,

feeds over a line of impedance,

Zl
= 2 + 4 njn,

a synchronous motor of the wave,

Ei = 2250 [(cos
-

ji sin 0) + 0.24 (cos 3 -
j3 sin 3 0)],

and of synchronous impedance,

Z2
= 0.3 + 6 njn.

The total impedance of the system is then,

Z = Z + Zi + Z2
= 2.6 + 15 njn,

thus the current,

. .
. 7=^-=-^ ^ <

~
'

2000-2250 cos 0+2250 j\ sin 240 -540 cos 3 0+540j sin30

2.6+15 ji 2.6-45J3
460 260

2.6 + 75 J6 2.6 + 105 J7

where

ai
1 = 22.5 - 25.2 cos + 146 sin 0,

a 3
l = 0.306 - 0.69 cos 3 + 11.9 sin 3 0,

a-5
1 = 0.213,

a?
i = -

0.061,

d 11 = 130 - 146 cos - 25.2 sin 0,

o 8
= 5.3 - 11.9 cos 3 - 0.69 sin 3 0,

a 5
n = _

6.12,

a 7
n = _

2.48,

or, absolute,
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first harmonic,

+ i
ll2

>

third harmonic,

fifth harmonic,
a b

= 6.12,

seventh harmonic,
a 7

=
2.48,

while the total current of higher harmonics is

/o = V as
2 + a 6

2 + a7
2

.

The true input of the synchronous motor is

P 1 = [EJ]
1

= (2250 a!
1 cos 0+2250 ai

nsin 0)+ (540 aj
1 cos 3 0+540 a 3

usin 3

= Pi 1 + Ps 1

Pi 1 = 2250 (a!
1 cos + a!

11 sin 0),

is the power of the fundamental wave,

Ps 1 = 540 (as
1 cos 3 + a 3

1>l sin 3 0),

the power of the third harmonic.

The fifth and seventh harmonics do not give any power, since

they are not contained in the synchronous motor wave. Sub-

stituting now different numerical values for 0, the phase angle

between generator e.m.f. and synchronous motor counter e.m.f.,

corresponding values of the currents, /, 7
,
and the powers, P 1

,

Pi 1

, Ps 1
,
are derived. These are plotted in Fig. 190 with the

total current, I, as abscissas. To each value of the total current,

/, correspond two values of the total power, P 1

,
a positive value

plotted as Curve I synchronous motor and a negative
value plotted as Curve II alternating-current generator .

Curve III gives the total current of higher frequency, /o, Curve

IV the difference between the total current and the current of

fundamental frequency, 7 7i, in percentage of the total current,

I, and V the power of the third harmonic, Ps 1
,
in percentage of

the total power, P 1
.

Curves III, IV, and V correspond to the positive or synchron-
ous motor part of the power curve, P 1

. As seen, the increase of
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current due to the higher harmonics is small, and entirely dis-

appears at about 180 amp. The power of the third harmonic

is positive, that is, adds to the power of the synchronous motor

SYNCHRONOUS MOTOR
#,= 2250 (cos. 0-f jisin.0) +

0.24 (cos. 30-hjs sin. 3d
OPERATED FROM GENERATOR

^0=2000 ( 1-1-0.12-0.23-0.13
OVER TOTAL IMPEDANCE

FIG. 190. Synchronous motor.

up to about 140 amp. or near the maximum output of the motor,

and then becomes negative.

It follows herefrom that higher harmonics in the e.m.f. waves

of generators and synchronous motors do not represent a mere

waste of current, but may contribute more or less to the output of
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the motor. Thus at 75 amp. total current, the percentage of

increase of power due to the higher harmonic is equal to the

increase of current, or in other words the higher harmonics

of current do work with the same efficiency as the fundamental

wave.

265. Fourth Example. In a small three-phase induction motor,
the constants per delta circuit are

primary admittance Y = 0.002 - 0.03 j,

self-inductive impedance Z = Zi = 0.6 + 2.4 j, :

and a sine wave of e.m.f., e Q
= 110 volts, is impressed upon the

motor.

The power output, P, current input, Is ,
and power-factor, p, as

function of the slip, s, are given in the first columns of the follow-

ing table, calculated in the manner as described in the chapter on

Induction Motors.

To improve the power-factor of the motor and bring it to

unity at an output of 500 watts, a condenser capacity is required

giving 4.28 amp. leading current at 110 volts, that is, neglecting
the power loss in the condenser, capacity susceptance

In this case, let 7, = current input into the motor per delta cir-

cuit at slip s, as given in the following table.

The total current supplied by the circuit with a sine wave of

impressed e.m.f. is

/' = J. + 4.28J,

power current . .

and herefrom the power-factor =
,

. *
--

, given in the
total current '

second columns of the table.

If the impressed e.m.f. is not a sine wave but a wave of the

shape,

EQ = e (li + 0.12 3
- 0.23 8

- 0.134 7),

to give the same output, the fundamental wave must be the same :

e = 110 volts, when assuming the higher harmonics in the motor

as wattless, that is,

EQ
= lid + 13.2 3

- 25.3 5
- 14.7 7

= eQ + EQ\
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where EQ
l = 13.2 3

- 25.3 5
- 14.7 7

= component of impressed e.m.f. of higher frequency.

The effective value is

EQ
= 114.5 volts.

The condenser admittance for the general alternating wave is

Yc
= 0.039 njn.

Since the frequency of rotation of the motor is small com-

pared with the frequency of the higher harmonics, as total

impedance of the motor for these higher harmonics can be

assumed the stationary impedance, and by neglecting the resist-

ance we have

Z l = njn(xQ + si)
= 4.8 njn

The exciting admittance of the motor, fpr these higher har-

monics, is, by neglecting the conductance,

yi __ _bjn = _ 0.03
jn^

n n

and the higher harmonics of counter e.m.f.,

Thus we have,

current input in the condenser,

Ie
- EQYC

= + 4.28 ji + 1.54 j,
- 4.93 J 6

- 4.02 J 7 ;

high-frequency component of motor-impedance current,

JV
^T

= - 0.92 J3 + 1.06 J5 + 0.44 J 7 ;

it

high-frequency component of motor-exciting current,

EJY 1

^ = - 0.07 j3 + 0.08 j 5 + 0.03 j 7 :

thus, total high-frequency component of motor current,
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and total current, without condenser,

Io = Is + /o
1 = Is - 0.99 J 3 + 1-14 J 6 + 0.47 J 7 ,

with condenser,

/ = Ia + Jo
1 - Ic

= L + 4.28 J! + 0.55 j s
- 3.79 J 5 + 3.55 J 7 ;

and herefrom the power-factor.

In the following table and in Fig. 191 are given the values of

current and power-factor:

I. With sine wave of e.m.f., of 110 volts, and no condenser.

II. With sine wave of e.m.f., of 110 volts, and with condenser.

III. With distorted wave of e.m.f., of 114.5 volts, and no condenser.

IV. With distorted wave of e.m.f., of 114.5 volts, and with condenser.

TABLE
I. II. III. IV.

s P I, I, p I p I p I p
0.0 0.24+ 3.10./ 3.1 7.8 1.2 20.0 3.5 6.6 5.2 4.4

0.01 160 1.73+ 3. IQj 3.648.0 2.1 84.0 3.943.0 5.531.0
0.02 320 3.32+ 3.47 j 4.869.0 3.4 97.2 5.164.0 6.154.0
0.035 500 5.16+ 4.28j 6.7 77.0 5.2 100.0 6.9 72.5 7.2 68.0

0.05 660 6.95+5.4.; 8.879.0 7.0 98.7 8.976.0.8.677.0
0.07 810 8.77+ 7.3 j 11.477.0 9.3 94.511.573.510.680.0
0.10 885 10.1 + 9.85j 14.1 71.5 11.5 87.0 14.2 68.0 12.6 77.0

0.13 900 10.45+ 11.45 j 15.5 67.5 12.7 82.015.664.513.773.0
0.15 890 10. 75+ 12. 9j 16.8 64.0 13.8 78.0 16.9 61.0 14.7 70.0

The curves II and IV with condenser are plotted in dotted lines

in Fig. 191. As seen, even with such a distorted wave the current

input and power-factor of the motor are not much changed if no

condenser is used. When using a condenser in shunt to the

motor, however, with such a wave of impressed e.m.f. the increase

of the total current, due to higher-frequency currents in the con-

denser, is greater than the decrease, due to the compensation of

lagging currents, and the power-factor is actually lowered by the

condenser, over the total range of load up to overload, and espe-

cially at light load.

Where a compensator or transformer is used for feeding the

condenser, due to the internal self-inductance of the compensa-

tor, the higher harmonics of current are still more accentuated,

that is, the power-factor still more lowered.

In the preceding the energy loss in the condenser and compen-
sator and that due to the higher harmonics of current in the motor
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has been neglected. The effect of this energy loss is a slight

decrease of efficiency and corresponding increase of power-factor.
The power produced by the higher harmonics has also been

neglected; it may be positive or negative, according to the index

100 200 300 400 600

GO

50

40

FIG. 191.

of the harmonic, and the winding of the motor primary. Thus,
for instance, the effect of the triple harmonic is negative in the

quarter-phase motor, zero in the three-phase motor, etc.; alto-

gether, however, the effect o these harmonics is usually small.



SECTION VII

POLYPHASE SYSTEMS

CHAPTER XXVIII

GENERAL POLYPHASE SYSTEMS

266. A polyphase system is an alternating-current system in

which several e.m.fs. of the same frequency, but displaced in

phase from each other, produce several currents of equal fre-

quency, but displaced phases.

Thus any polyphase system can be considered as consisting

of a number of single circuits, or branches of the polyphase sys-

tem, which may be more or less interlinked with each other.

In general the investigation of a polyphase system is carried

out by treating the single-phase branch circuits independently.
Thus all the discussions on generators, synchronous motors,

induction motors, etc., in the preceding chapters, apply to single-

phase systems as well as polyphase systems, in the latter case

the total power being the sum of the powers of the individual or

branch circuits.

If the polyphase system consists of n equal e.m.fs. displaced

from each other by
- of a period, the system is called a symmet-

rical system, otherwise an unsymmetrical system.

Thus the three-phase system, consisting of three equal e.m.fs.

displaced by one-third of a period, is a symmetrical system. The

quarter-phase system, consisting of two equal e.m.fs. displaced

by 90, or one-quarter of a period, is an unsymmetrical system.
267. The power in a single-phase system is pulsating; that is,

the watt curve of the circuit is a sine wave of double frequency,

alternating between a maximum value and zero, or a negative

maximum value. In a polyphase system the watt curves of the

different branches of the system are pulsating also. Their sum,

however, or the total power of the system, may be either con-

396
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stant or pulsating. In the first case, the system is called a
balanced system, in the latter case an unbalanced system.

The three-phase system and the quarter-phase system, with

equal load on the different branches, are balanced systems; with

unequal distribution of load between the individual branches

both systems become unbalanced systems.

FIG. 192.

The different branches of a polyphase system may be either

independent from each other, that is, without any electrical inter-

connection, or they may be interlinked with each other. In the

first case the polyphase system is called an independent system,
in the latter case an interlinked system.

The three-phase system with star-connected or ring-connected

generator, as shown diagrammatically in Figs. 192 and 193, is an
interlinked system.

"

FIG. 193.

The four-phase system as derived by connecting four equi-
distant points of a continuous-current armature with four

collector rings, as shown diagrammatically in Fig. 194, is an

interlinked system also. The four-wire, quarter-phase system
produced by a generator with two independent armature coils, or

by two single-phase generators rigidly connected with each other

in quadrature, is an independent system. As interlinked system,
it is shown in Fig. 195, as star-connected, four-phase system.
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268. Thus, polyphase systems can be subdivided into:

Symmetrical systems and unsymmetrical systems.

Balanced systems and unbalanced systems.

Interlinked systems and independent systems.

The only polyphase systems which have found practical appli-

cation are:

FIG. 194.

The three-phase system, consisting of three e.m.fs. displaced

by one-third of a period, is used exclusively as interlinked system.
The quarter-phase system, consisting of two e.m.fs. in quad-

rature, and used with four wires, or with three wires, which may
be either an interlinked system or an independent system.
The six-phase system, consisting of two three-phase systems

in opposition to each other, and derived by transformation from

E

i



CHAPTER XXIX

SYMMETRICAL POLYPHASE SYSTEMS

269. If all the e.m.fs. of a polyphase system are equal in

intensity and differ from each other by the same angle of differ-

ence of phase, the system is called a symmetrical polyphase

system.

Hence, a symmetrical n-phase system is a system of n e.m.fs.

of equal intensity, differing from each other in phase by - of a

period :

ei = E sin

i 2ir\
e 2
= E sin (0

---
) ;

\ n I

e9
= E sin h3 --

)
;

\ 7t> /

_ 2(n- 1) IT

\ n
The next e.m.f. is, again,

ei = E sin (/3 2 TT)
= # sin (8.

In the vector diagram the n e.m.fs. of the symmetrical ft-phase

system are represented by n equal vectors, following each other

under equal angles.

Since in symbolic writing rotation by - of a period, or angle

2?r
,
is represented by multiplication with

lb

27T
'

. . 27T
cos \- j sin - - =

e,n n

the e.m.fs. of the symmetrical polyphase system are

E;

E
(cos^I + ^in

2

^)
= E(

.

399
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E
(
cos ^ -1- j sin ^)

= Ee2
;

,- / 2 (n
-

1) TT
,

2 (n
-

1) ir\# cos - -^ + 7 sin ---
)
- Ee 1 - 1

.

\ n n )

The next e.m.f. is again,

E(cos 2 TT + j sin 2 TT)
= Een = E.

Hence, it is

2*. . . 2 /-
e = cos + j sin = VI.

/6 '6

Or in other words:

In a symmetrical n-phase system any e.m.f. of the system is

expressed by
JE;

where

- vT.

270. Substituting now for n different values, we get the

different symmetrical polyphase systems, represented by

where

n/- 27T . . 27T= VI = cos - + J sin
7t Tt

1. n =
1,

=
1, c^ = E,

the ordinary single-phase system.

2. n =
2,

=
1, e{E = E and #.

Since 7 is the return of E, n = 2 gives again the single-

phase system.

2w . . 27r - 1 + j y/3
3. n =

3, e = cos -j- -f j sin - = -

2

The three e.m.fs. of the three-phase system are

Consequently the three-phase system is the lowest symmetrical

polyphase system.
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2ir 2?r
4. n =

4, c = cos -- + j sin =
j,

2 =
1, e

3 =
j.

The four e.m.fs. of the four-phase system are,

^E = E, JE,
- E, -jE.

They are in pairs opposite to each other,

E and - #; jE and -
jE.

Hence can be produced by two coils in quadrature with each

other, analogous as the two-phase system, or ordinary alternating

current system, can be produced by one coil.

Thus the symmetrical quarter-phase system is a four-phase

system.

Higher systems than the quarter-phase or four-phase system
have not been very extensively used, and are thus of less practical

interest. A symmetrical six-phase system, derived by trans-

formation from a three-phase system, has found application in

synchronous converters, as offering a higher output from these

machines, and a symmetrical eight-phase system proposed for

the same purpose.
271. A characteristic feature of the symmetrical n-phase sys-

tem is that under certain conditions it can produce a rotating

m.m.f. of constant intensity.

If n equal magnetizing coils act upon a point under equal

angular .displacements in space, and are excited by the n e.m.fs.

of a symmetrical n-phase system, a m.m.f. of constant intensity

is produced at this point, whose direction revolves synchronously
with uniform velocity.

Let

n' = number of turns of each magnetizing coil.

E effective value of impressed e.m.f .

I = effective value of current.

Hence,
F = n'l = effective m.m.f. of one of the magnetizing coils.

Then the instantaneous value of the m.m.f. of the coil acting

in the direction, ,
is

n '

= n'l V2 sin
(ft

- ~
26
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The two rectangular space components of this m.m.f. are

., 2iri

/ =
/< cos

f- 2iri . I 2iri\= n'l V 2 cos sin \B I

and

//'-/, sin

, T f- ,
2 in . / 2-7r?A= n /v 2 sin sin 1/3 I-
n \ n /

Hence the m.m.f. of this coil can be expressed by the symbolic

formula

/T /- ( n 2iri\ I 2iri
t

. . 2iri\
/ = n 7\/2 sin 1/3 )

I cos h J sin
)

Y n I \ n n I

Thus the total or resultant m.m.f. of the n coils displaced under

the n equal angles is

v-r /7 /S^- /* 27rA/ 27rt. .2irA
/ = S* / = n7V 2 2* sin

(
-

)
I cos- + j sin -

i i \ f*7\ n n I

or, expanded,

rr /sf ov-/ 2iri . . . 27ri 2irA
/ = n /v 2 sin |8 Z l

I cos 2 --h J sin -- cos
I i \ n n n I

Q
"

. / . 2 2Tt, 2 2H\\cos |8 2/ sin- cos--h J sin 2 -

i \ n n n /j
It is, however,

'

9 2iri
,

2iri 2irz
,

/. 4^ 47rA
cos2 + j sin cos =

(1 + cos + j sin
j

sm
2irc 2irt

, ,2iri j A 4irl
'

4ir*\
cos +jsm 2 =

^ (l
- cos -

3 sin
)

and, since

2<e 2i =
0, Se- 2i =

0,
i i

it is,

, .

/= - -
(sm/3 -jcos/8);
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or,

, nn'7 , . N

/ = ^ (sin
-

j cos 0)

(sin0 j cos0);

the symbolic expression of the m.m.f. produced by the n circuits

of the symmetrical n-phase system, when exciting n equal mag-

netizing coils displaced in space under equal angles.

The absolute value of this m.m.f. is

=
nn'I nF

=
nFmax

''

V2
==

A/2
=

2

Hence constant and equal
-

^= times the effective m.m.f. of

each coil or ^ times the maximum m.m.f. of each coil.

The phase of the resultant m.m.f. at the time represented by
the angle is

tan 6 = cot 0; hence 6 = ~'

That is, the m.m.f. produced by a symmetrical n-phase system
revolves with constant intensity,

V2
and constant speed, in synchronism with the frequency of the

system; and, if the reluctance of the magnetic circuit is constant,

the magnetism revolves with constant intensity and constant

speed also, at the point acted upon symmetrically by the n

m.m.fs. of the n-phase system.
This is a characteristic feature of the symmetrical polyphase

system.

272. In the three-phase system, n =
3, FQ = 1.5 Fmax ,

where

Fmax is the maximum m.m.f. of each of the magnetizing coils.

In a symmetrical quarter-phase system, n =
4, FQ = 2 Fmax ,

where Fmax is the maximum m.m.f. of each of the four magnet-

izing coils, or, if only two coils are used, since the four-phase

m.m.fs. are opposite in phase by two, FQ = Fmax ,
where Fmax is

the maximum m.m.f. of each of the two magnetizing coils of the

quarter-phase system.
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While the quarter-phase system, consisting of two e.m.fs. dis-

placed by one-quarter of a period, is by its nature an unsym-
metrical system, it shares a number of features as, for instance,

the ability of producing a constant-resultant m.m.f. with the

symmetrical system, and may be considered as one-half of a

symmetrical four-phase system.

Such systems, consisting of one-half of a symmetrical system,
are called hemisymmetrical systems.



CHAPTER XXX

BALANCED AND UNBALANCED, POLYPHASE SYSTEMS

273. If an alternating e.m.f.,

e = E\/2 sin 0,

produces a current,

i = 7\/2 sin (0
-

0),

where is the angle of lag, the power is

p = ei = 2 EI sin sin (0
-

0)

= EI (cos
- cos (2

-
0)),

and the average value of power,

P = EI cos 0.

Substituting this, the instantaneous value of power is found as

cos (2
-

Hence the power, or the flow of energy, in an ordinary single-

phase, alternating-current circuit is fluctuating, and varies with

twice the frequency of e.m.f. and current, unlike the power of a

continuous-current circuit, which is constant,

p = ei.

If the angle of lag,
=

0, it is,

p = P(l - cos 20);

hence the flow of energy varies between zero and 2 P, where P is

the average flow of energy or the effective power of the circuit.

If the current lags or leads the e.m.f. by angle 0, the power
varies between

cos / \ cos

that is, becomes negative for a certain part of each half-wave.

That is, for a time during each half-wave, energy flows back into

405
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the generator, while during the other part of the half-wave the

generator sends out energy, and the difference Between both is

the effective power of the circuit.

If 6 = 90, it is

p = - El sin 2 /3;

that is, the effective power P =
0, and the energy flows to and

fro between generator and receiving circuit.

Under any circumstances, however, the flow of energy in the

single-phase system is fluctuating, at least between zero and a

maximum value, frequently even reversing.

274. If in a polyphase system

e\, 2, e 3 ,
. . . .

= instantaneous values of e.m.f.;

iit iz, 2*3, . . . .
= instantaneous values of current pro-

duced thereby,

the total power in the system is

p = eiii + eziz + 03*3 +
The average power is

P = EJi cos 0i + EJz cos 2 + . . . .

The polyphase system is called a balanced system, if the flow

of energy

p = eiii + e2iz

is constant, and it is called an unbalanced system if the flow of

energy varies periodically, as in the single-phase system ;
and the

ratio of the minimum value to the maximum value of power is

called the balance-factor of the system.

Hence in a single-phase system on non-inductive circuit,

that is, at no-phase displacement, the balance-factor is zero;

and it is negative in a single-phase system with lagging or

leading current, and becomes equal to 1 if the phase displace-

ment is 90 that is, the circuit is wattless.

275. Obviously, in a polyphase system the balance of the

system is a function of the distribution of load between the

different branch circuits.

A balanced system in particular is called a polyphase system,
whose flow of energy is constant, if all the circuits are loaded

equally with a load of the same character, that is, the same phase

displacement.
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276. All the symmetrical systems from the three-phase system

upward are balanced systems. Many unsymmetrical systems
are balanced systems also.

1. Three-phase system:
Let

i
= E \/2 sin 0, and ii = I \/2 sin (0 0),

2
= E \/2 sin (0

-
120), i2 = / \/2 sin (ft

- 6 - 120),

e 3
= E <\/2 sin (0

-
240), *, = I \/2 sin (]8

- -
240),

be the e.m.fs. of a three-phase system and the currents produced

thereby.

Then the total power is

p = 2 El {sin ft sin (0
-

0) + sin (0
-

120) sin (0
- -

120)

+ sin (0
-

240) sin (ft
- 6 - 240) J

= 3 El cos = P, or constant.

Hence the symmetrical three-phase system is a balanced

system.
2. Quarter-phase system:

Let ei = E \/2 sin ft, ii = I \/2 sin (ft 0),

ez = E \/2 cos 0, i2 = 7 \/2 cos (0
-

0)

be the e.m.fs. of the quarter-phase system, and the currents

produced thereby.

This is an unsymmetrical system, but the instantaneous value

of power is

p = 2 EI {sin sin (ft
-

0) + cos ft cos (ft
-

0) j

= 2 EI cos = P, or constant.

Hence the quarter-phase system is an unsymmetrical balanced

system.

3. The symmetrical n-phase system, with equal load and equal

phase-displacement in all n branches, is a balanced system.

For, let

ei = E\/2 sin (ft
j
= e.m.f .

;

it
= 7\/2 sin (0 )

= current;
\ 71 /
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the instantaneous value of power is

i

= 2 El S*
sin(0

-
?^)

sin
(0
- - ^)

f "
/ 47TA 1

= #/ S* cos - S' cos (2/3
-

I
;

{ i i
\

*-.]

or p = n7 cos = P, or constant.

277. An unbalanced polyphase system is the so-called inverted

three-phase system, derived from two branches of a three-phase

system by transformation by means of two transformers, whose

secondaries are connected in opposite direction with respect to

their primaries. Such a system takes an intermediate position

between the Edison three-wire system and the three-phase

system. It shares with the latter the polyphase feature, and with

the Edison three-wire system the feature that the potential differ-

ence between the outside wires is higher than between middle wire

and outside wire.

By such a pair of transformers the two primary e.m.fs. of 120

displacement of phase are transformed into two secondary e.m.fs.,

differing from each other by 60. Thus in the secondary circuit

the difference of potential between the outside wires is \/3 times

the difference of potential between middle wire and outside wire.

At equal load on the two branches, the three currents are equal,

and differ from each other by 120, that is, have the same relative

proportion as in a three-phase system. If the load on one

branch is maintained constant, while the load of the other branch

is reduced from equality with that in the first branch down to

zero, the current in the middle wire first decreases, reaches a

minimum value of
-^-

= 0.866 of its original value, and then

increases again, reaching at no-load the same value as at full-load.

The balance factor of the inverted three-phase system on non-

inductive load is 0.333.

278. In Figs. 196 to 203 are shown the e.m.fs., as e and currents

as i in full lines, and the power as p in dotted lines, for balance-

factor, 0; balance-factor, 0.333; balance-factor, + 1; balance-

factor, + 1; balance-factor, + 1; balance-factor, + 1; balance-

factor, + 0.333, and balance-factor, 0.
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279. The flow of energy in an alternating-current system is a

most important and characteristic feature of the system, and by
its nature the systems may be classified into:

Monocyclic systems, or systems with a balance-factor zero or

negative.

Polycyclic systems, with a positive balance-factor.

Balance-factor 1 corresponds to a wattless single-phase

circuit, balance-factor zero to a non-inductive single-phase

circuit, balance-factor + 1 to a balanced polyphase system.

280. In polar coordinates the flow of energy of an alternating

current system is represented by using the instantaneous value

of power as radius vector, with the angle, j3, corresponding to

the time as amplitude, one complete period being represented by
one revolution.

In this way the power of an alternating-current system is

represented by a closed symmetrical curve, having the zero point

as quadruple point. In the monocyclic systems the zero point is

quadruple nodal point; in the polycyclic systems quadruple
isolated point.

Thus these curves are sextics.

Since the flow of energy in any single-phase branch of the

alternating-current system can be represented by a sine wave of

double frequency,

,

sin (2 0)>
P =

cos

the total flow of energy of the system as derived by the addition

of the powers of the branch circuits can be represented in the

form

p =P(1 + 6 sin (2/3
-

)).

This is a wave of double frequency also, with e as amplitude of

fluctuation of power.
This is the equation of the power characteristics of the system

in polar coordinates.

287. To derive the equation in rectangular coordinates we
introduce a substitution which revolves the system of coordinates

t\

by an angle, -^,
so as to make the symmetry axes of the power

characteristic the coordinate axes.

P =
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hence,

sin (2 0- 9 )
= 2 sin

(0
-
|)

cos
(0
-
|)

=

substituted,

or, expanded,

(a
.2 + 02)8

_ P 2
(a

.2 + 2/
2 + 2 6^)

2 =
0,

the sextic equation of the power characteristic.

Introducing

a = (l-fe)P = maximum value of power,

6 = (1 e) P = minimum value of power;
we have

P
<* + *>

2 '

a-b
=

a + b'

hence, substituted, and expanded,

(z
2 + y

2
)
3 -

\ [a(x + yY + b(x
-

^)
2

}

2 =
0,

the equation of the power characteristic, with the main power

axes, a and b, and the balance-factor,

It is thus:

Single-phase, non-inductive circuit, p = P (1 + sin 2 6), b =
0,

a = 2P,

(z
2 + t/

2
)
3 - P 2

(z + 2/)
4 =

0, \
= 0.

Single-phase circuit, 60 lag: p = P (1 + 2 sin 2 0), 6 -= - P,

a = + 3 P,

(X
2 + ^2)3

_ P 2
(3.2 +3,2+4 Z2/)

2 =
0,

b- = ~
g"

Single-phase circuit, 90 lag: p = El sin 2 0,

b = -
El, a= +EI,

(a
.2 + ^2)3

_ 4 (EI)*x*y*,
b- = - 1.
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Three-phase non-inductive circuit, p = P, 6 =
1, a =

l,

\

x 2 + y
2 - P 2 =

0, circle.
- = + 1.

/v\

Fia. 196. Single-phase, non-inductive circuit.

FIG. 197. Single-phase, 60 lag.

FIG. 19$. Quarter-phase, non-inductive circuit.

Three-phase circuit, 60 lag, p=P, 6 = l,a =
l,

+ y
2 - P2 =

0, circle.
- = -f 1.
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Quarter-phase non-inductive circuit, p = P, 6 =
1, a =

1,

x2 + y
2 - P2 =

0, circle. - = + 1.

FIG. 199. Quarter-phase, 60 lag.

e S X 6
*

FIG. 200. Three-phase, non-inductive circuit,

e v ^ e.

FIG. 201. Three-phase, 60 lag.

Quarter-phase circuit, 60 lag, p = P, 6 =
1, a =

l,

x2 + y
2 - P2 =

0, circle.
- = + 1.
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FIG. 202. Inverted three-phase, non-inductive circuit.

FIG. 203. Inverted three-phase, 60 lag.
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Inverted three-phase non-inductive circuit,

(x
2 + yY - P 2

(x* + y* + xyY = 0.
~- = + -

Inverted three-phase circuit 60 lag, p = P(l + sin 2 0), 6 =
0,

a = 2P,

z2 23 -P 2 * + i
4 = 0. = 0.

FIGS. 204 AND 205. Power
characteristic of single-phase
system, at and 60 lag.

FIGS. 206 AND 207. Power
characteristic of inverted three-

phase system, at 0and 60 lag.

a and 6 are called the main power axes of the alternating-cur-

rent system, and the ratio, ,
is the balance-factor of the system.

282. As seen, the flow of energy of an alternating-current sys-

tem is completely characterized by its two main power axes,

a and 6.

The power characteristics in polar coordinates, corresponding
to the Figs. 196, 197, 202 and 203 are shown in Figs. 204, 205,

206 and 207.

The balanced quarter-phase and three-phase systems give as

polar characteristics concentric circles.



CHAPTER XXXI

INTERLINKED POLYPHASE SYSTEMS

283. In a polyphase system the different circuits of displaced

phases, which constitute the system, may either be entirely

separate and without electrical connection with each other, or

they may be connected with each other electrically, so that a

part of the electrical conductors are in common to the different

phases, and in this case the system is called an interlinked poly-

phase system.

Thus, for instance, the quarter-phase system will be called an

independent system if the two e.m.fs. in quadrature with each

other are produced by two entirely separate coils of the same,
or different, but rigidly connected, armatures, and are connected

to four wires which energize independent circuits in motors or

other receiving devices. If the quarter-phase system is derived

by connecting four equidistant points of a closed-circuit drum
or ring-wound armature to the four collector rings, the system is

an interlinked quarter-phase system.

Similarly in a three-phase system. Since each of the three

currents which differ from each other by one-third of a period
is equal to the resultant of the other two currents, it can be con-

sidered as the return circuit of the other two currents, and an

interlinked three-phase system thus consists of three wires con-

veying currents differing by one-third of a period from each

other, so that each of the three currents is a common return of

the other two, and inversely.

284. In an interlinked polyphase system two ways exist of

connecting apparatus into the system.

1. The star connection, represented diagrammatically in Fig.

208. In this connection the n circuits, excited by currents differ-

ing from each other by
- of a period, are connected with their

one end together into a neutral point or common connection,

which may either be grounded, or connected with other corre-

sponding neutral points, or insulated.

415
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In a three-phase system this connection is usually called a Y
connection, from a similarity of its diagrammatical representa-

tion with the letter F, as shown in Fig. 197.

2. The ring connection, represented diagrammatically in Fig.

209, where the n circuits of the apparatus are connected with

each other in closed circuit, and the corners or points of connec-

tion of adjacent circuits connected to the n lines of the polyphase

FIG. 209.

system. In a three-phase system this connection is called the

delta (A) connection, from the similarity of its diagrammatic

representation with the Greek letter delta, as shown in Fig. 193.
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In consequence hereof we distinguish between star-connected

and ring-connected generators, motors, etc., or in three-phase

systems Y-connected and A-connected apparatus.

285. Obviously, the polyphase system as a whole does not

differ, whether star connection or ring connection is used in the

generators or other apparatus; and the transmission line of a

symmetrical n-phase system always consists of n wires carrying

currents of equal strength, when balanced, differing from each

other in phase by of a period. Since the line wires radiate

from the n terminals of the generator, the lines can be considered

as being in star connection.

The circuits of all the apparatus, generators, motors, etc., can

either be connected in star connection, that is, between one line

and a neutral point, or in ring connection, that is, between two

adjacent lines.

In general some of the apparatus will be arranged in star con-

nection, some in ring connection, as the occasion may require.

. 286. In the same way as we speak of star connection and ring

connection of the circuits of the apparatus, the terms star voltage

and ring voltage, star current and ring current, etc., are used,

whereby as star voltage or in a three-phase circuit Y voltage, the

potential difference between one of the lines and the neutral

point, that is, a point having the same difference of potential

against all the lines, is understood; that is, the voltage as meas-

ured by a voltmeter connected into star or Y connection. By
ring or delta voltage is understood the difference of potential

between adjacent lines, as measured by a voltmeter connected

between adjacent lines, in ring or delta connection.

In the same way the star or Y current is the current in a cir-

cuit from one line to a neutral point; the ring or delta current,

the current in a circuit from one line to the next line.

The current in the transmission line is always the star or Y
current, and the potential difference between the line wires, the

ring or delta voltage.

Since the star voltage and the ring voltage differ from each

other, apparatus requiring different voltages can be connected

into the same polyphase mains, by using either star or ring

connection.

287. If in a generator with star-connected circuits, the e.m.f.

per circuit = E
t
and the common connection or neutral point

27
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is denoted by zero, the voltages of the n terminals are

E, eE, JE . . , . e
n~ l

E',

or in general, e\Z,

at the i
ih

terminal, where,

i = 0, 1, 2 . . . . n 1, e = cos ---h j sin = \/l.
Tb T\J

Hence the e.m.f . in the circuit from the i
ih

to the k
ih
terminal is

Eki = e
k E - CE =

(e
k - ^E.

The e.m.f. between adjacent terminals i and i + 1 is

In a generator with ring-connected circuits, the e.m.f. per

circuit

JE,

is the ring e.m.f., and takes the place of

while the e.m.f. between terminal and neutral point, or the star

e.m.f., is

Hence in a star-connected generator with the e.m.f. E per

circuit, it is:

star e.m.f., c* E,

ring e.m.f ., e
i

(e 1)E,

e.m.f. between terminal i and terminal k, (e
k

e^E.

In a ring-connected generator with the e.m.f., E, per circuit,

it is

star e.m.f., ,,
1

ring e.m.f., t
{

E,

e.m.f. between terminals i and k,

In a star-connected apparatus, the e.m.f. and the current per
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circuit have to be the star e.m.f. and the star current. In a

ring-connected apparatus the e.m.f. and current per circuit have

to be the ring e.m.f. and ring current.

In the generator of a symmetrical polyphase system, if

e
{E are the e.m.fs. between the n terminals and the neutral

point, or star e.m.fs.

Ii = the currents issuing from terminals i over a line of the

impedance, Zi (including generator impedance in star connec-

tion), we have

voltage at end of line i,

e*E - ZJi,

and difference of potential between terminals k and i

(e
k - e^E - (Zklk - Zili),

where /< is the star current of the system, Zi the star impedance.

The ring voltage at the end of the line between terminals i

and k is EM, and

Eik = Eki>

If now lik denotes the current from terminal i to terminal k,

and Zik impedance of the circuit between terminal i and ter-

minal k, where

lik =
Iki,

Zik = Zk i,

we have E ik
= Z ikl ik .

If lio denotes the current in the circuit from terminal i to a

ground or neutral point, and Z t-o is the impedance of this circuit

between terminal i and neutral point, it is

E io
== f^E Zil i

= Z iol io-

288. We have thus, by Ohm's law and Kirchoff's law:

If eiE is the e.m.f. per circuit of the generator, between the

terminal, i, and the neutral point of the generator, or the star

e.m.f.

Ii = the current at the terminal, i, of the generator, or the

star current.

Zi = the impedance of the line connected to a terminal, ?',
of

the generator, including generator impedance.
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Ei = the e.m.f. at the end of line connected to a terminal, i,

of the generator.

Eik = the difference of potential between the ends of the lines,

i and fe.

Iik = the current from line i to line k.

Z ik
= the impedance of the circuit between lines i and k.

/to, /too . . . .
= the current from line i to neutral points

0, 00, '..'..

Zio, Zioo . . . .
= the impedance of the circuits between

line i and neutral points 0, 00, ....
Then:

177T
T7T T T 77 __ f7 T ~f

.. Hi \k
~"

J^kij * ik
~ "~

J-ki ^ ik ***) -* to
~ I

iy

A/ {o fjoi* GT/C/

2. /? =

3. E =

4. E ifc
= Efc

- E t
=

(e*
- eOE - (ZJ fc

- Zi/ t-).

n

6. /, = 2*/tfc.
*

7. If the neutral point of the generator does not exist, as in

ring connection, or is insulated from the other neutral points :

n

2*1 i
=

1

S'/i. =0;
1

n

S</,-oo =
0, etc

Where 0, 00, etc., are the different neutral points which are

insulated from each other.

If the neutral point of the generator and all the other neutral

points are grounded or connected with each other, we have,

1 1

1
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If the neutral point of the generator or other neutral points
are grounded, the system is called a grounded system. If the

neutral points are not grounded, the system is an insulated poly-

phase system, and an insulated polyphase system with equalizing

return, if all the neutral points are connected with each other.

8. The power of the polyphase system is

n

S' 1EIa cos 0i at the generator,

P 2*2* Eiklik cos 6ik in the receiving circuits.



CHAPTER XXXII

TRANSFORMATION OF POLYPHASE SYSTEMS

289. In transforming one polyphase system into another poly-

phase system, it is obvious that the primary system must have

the same flow of energy as the secondary system, neglecting

losses in transformation, and that consequently a balanced sys-

tem will be transformed again into a balanced system, and an

unbalanced system into an unbalanced system of the same bal-

ance-factor, since the transformer is not able to store energy,

and thereby to change the nature of the flow of energy. The

energy stored as magnetism amounts in a well-designed trans-

former only to a very small percentage of the total energy. This

shows the futility of producing symmetrical balanced polyphase

systems by transformation from the unbalanced single-phase

system without additional apparatus able to store energy effi-

ciently, as revolving machinery, etc.

Since any e.m.f. can be resolved into, or produced by, two

components of given directions, the e.m.f. of any polyphase sys-

tem can be resolved into components or produced from compon-
ents of two given directions. This enables the transformation

of any polyphase system into any other polyphase system of the

same balance-factor by two transformers only.

290. Let Ei, Ez, Ez . . . . be the e.m.fs. of the primary sys-

tem which shall be transformed into

E'iy E'z, E'z .... the e.m.fs. of the secondary system.

Choosing two magnetic fluxes, $> and 3>, of different phases,

as magnetic circuits of the two transformers, which generate the

e m.fs., e and e, per turn, by the law of parallelogram the e.m.fs.,

El, EZ, .... can be resolved into two components, ~E\ and

Ei, Ez and E?2 , .... of the phases, ~e and ~e.

Then_
Ely Ez, .... are the counter e.m.fs. which have to be gen-

_ erated in the primary circuits of the first transformer;

Ely THz, .... the counter e.m.fs. which have to be generated
in the primary circuits of the second transformer.

422
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Hence
7^ 7^

---
. . . . are the numbers of turns of the primary coils of

e e

the first transformer.

Analogously
7T ~W '

-=- . . . . are the numbers of turns of the primary coils in
e e

the second transformer.

In the same manner as the e.m.fs. of the primary system have

been resolved into components in phase with e and e, the e.m.fs. of

the secondary system, E'i, E'%, ..:'... are produced from com-

ponents, E'i, and E'i, E'*, and E'z . . . . in phase with e and

e, and give as numbers of secondary turns

-=- -=- ... .in the first transformer:
e e

Tjlf EV

-*-> -s ... .in the second transformer.
e e

That means each of the two transformers, m and ra, contains in

general primary turns of each of the primary phases, and second-

ary turns of each of the secondary phases. Loading now the

secondary polyphase system in any desired manner, correspond-

ing to the secondary currents, primary currents will exist in such

a manner that the total flow of energy in the primary polyphase

system is the same as the total flow of energy in the secondary

system, plus the loss of power in the transformers.

291. As an instance may be considered the transformation of

the symmetrical balanced three-phase system,

E sin j8, E sin (0
-

120), E sin (0
-

240),

into an unsymmetrical balanced quarter-phase system,

E' sin ft E' sin (0
-

90).

Let the magnetic flux of the two transformers be chosen in quad-
rature

$ cos j8 and & cos (0 90).

Then the e.m.fs. generated per turn in the transformers are

e sin and e sin (ft 90) ;
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hence, in the primary circuit the first phase, E sin 0, will give, in

E
the first transformer, primary turns

;
in the second transformer,

6

primary turns.

The second phase, E sin (/3 120), will give, in the first trans-

- E
former, -~ primary turns

;
in the second transformer, ~

primary turns.

The third phase, E sin (j3 240), will give, in the first trans-

J7I _ Tjl
\.s

former, -= -

primary turns
;
in the second transformer,,Z 6 Z e

primary turns.

In the secondary circuit the first phase, E' sin /3, will give in

T?r

the first transformer: --
secondary turns; in the second trans-

e

former: secondary turns.

The second phase: E' sin (/3 90) will give in the first trans-

T?'

former : secondary turns
;
in the second transformer, second-

ary turns.

Or, if

E = 5000, E' = 100, e = 10.

PRIMARY SECONDARY

1st. 2d. 3d. 1st. 2d.

First transformer +500 -250 -250 10

Second transformer +433 -433 10 turns.

Using autotransformer connection in the three-phase primaries
of the first transformer, that is, using as coils of the second and

the third phase the two halves of the coil of the first phase, this

gives the well known T-connection of three-phase-quarter-phase
transformation.

That means :

Any balanced polyphase system can be transformed by two

transformers only, without storage of energy, into any other balanced

polyphase system.

Or more generally stated:

Any polyphase system can be transformed by two transformers

only, without storage of energy, into any other polyphase system

of the same balance factor.
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292. Some of the more common methods of transformation

between polyphase systems are:

1. The delta-Y connection of transformers between three-phase

systems, shown in Fig. 210. One side of the transformers is

connected in delta, the other in Y. This arrangement becomes

necessary for feeding four-wire three-phase secondary distribu-

tions. The Y connection of the secondary allows the bringing

out of a neutral wire, while the delta connection of the primary
maintains the balance, in regard to the voltage between the

phases at unequal distribution of load.

The delta-Y connection of step-up transformers is frequently

used in long-distance transmissions, to allow grounding of the

high-potential neutral. Under certain conditions which there-

fore have to be guarded against it is liable to induce excessive

voltages by resonance with the line capacity.

FIG. 210.

The reverse thereof, or the Y-delta connection, is undesirable

on unbalanced load, since it gives what has been called a "
float-

ing neutral;" the three primary Y voltages do not remain even

approximately constant, at unequal distribution of load on the

secondary delta, but the primary voltage corresponding to the

heavier loaded secondary, and, therefore, also the corresponding-

secondary voltage, collapses. Thereby the common connection

of the primary shifts toward one corner of the e.m.f. triangle,

away from the center of the triangle, and may even fall outside

of the triangle. As result thereof the secondary triangle becomes

very greatly distorted even at moderate inequality of load, and

the system thus loses all ability to maintain constant voltage at

unequal distribution of load, that is, becomes inoperative. In

high-potential systems in this case excessive voltages may be

induced by resonance with the line capacity.

For instance, if only one phase of the secondary triangle is
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loaded, the other two unloaded, the primary current of the

loaded phase must return over the other two transformers, which,

at open secondaries, act as very high reactances, thus limiting

the current and consuming practically all the voltage, and the

loaded primary, and thus its secondary, receive practically no

voltage.

Y-delta connection is satisfactory if the secondary load is

balanced, as induction or synchronous motors, or if the primary
neutral is connected with the generator neutral or the secondary
neutral of step-up transformers in which the primaries are con-

nected in delta, and the unbalanced current can return over the

neutral. If with Y-delta connection, in addition to an un-

balanced load, the secondary carries polyphase motors, the

motors take different currents in the different phases, so tha\t

the total current is approximately the same in all three phases.

That is, the motors act as phase converters, and so partially

restore the balance of the system.
2. The delta-delta connection of transformers between three-

phase systems, in which primaries as well as secondaries are con-

nected in the same manner as the primaries in Fig. 210.

Since in this system each phase is transformed by a separate

transformer, the voltages of the system remain balanced even at

unbalanced load, within the limits of voltage variation due to

the internal self-inductive impedance (or short-circuit impedance)
of the transformers which is small, while the exciting impedance

(or open-circuit impedance) of the transformers, which causes

the unbalancing in the Y-delta connection above discussed is

enormous.

3. Y-F connection of transformers between three-phase sys-

tems. Primaries and secondaries connected as the secondaries

in Fig. 210.

In this case, if the neutral is not fixed by connection with a

fixed neutral, either directly or by grounding it, the neutral also

is floating, and so abnormal voltages may be produced between

the lines and the neutral, without appearing in the voltages be-

tween the lines, and may lead to disruptive effects, or to over-

heating of the transformers, so that this connection is not an

entirely safe one.

Where in transformer connections in polyphase systems, a

neutral or common connection of the transformers exists, care

must, therefore, be taken to have this neutral a fixed voltage
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point, irrespective of the variation of the load or its distribution,

which may occur; otherwise harmful phenomena may result from

a "
floating" or

" unstable" neutral.

In connections (2) and (3), the secondary-e.m.f. triangle is in

phase with the primary-e.m.f. triangle, while in (1) it is displaced

therefrom by 30. Therefore, even if the voltages are equal, con-

nection (1) cannot be operated in parallel with (2) or (3), but (2)

FIG. 211.

and (3) can be operated in parallel with each other, and with the

connections (4) and (5), provided that the voltages are correct.

4. The V connection or open delta connection of transformers

between three-phase systems, consists in using two sides of the

triangle only, as shown in Fig. 211. This arrangement has the

disadvantage of transforming one phase by two transformers in

series, hence is less efficient, and is liable to unbalance the system

\
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two transformers is wound for x times the voltage of the other
Zi

(the altitude of the equilateral triangle), and connected with one

of its ends to the center of the other transformer. From the

point one-third inside of the teaser transformer, a neutral wire

can be brought out in this connection.

6. The monocyclic connection, transforming between three-

FIG. 213.

phase and inverted three-phase or polyphase monocyclic, by two

transformers, the secondary of one being reversed regarding its

primary, as shown in Fig. 213.

7. The L connection for transformation between quarter-phase

and three-phase as described in the example, 291.

8. The T connection of transformation between quarter-phase

and three-phase, as shown in Fig. 214. The quarter-phase sides

FIG. 214.

of the transformers contain two equal and independent (or inter-

linked) coils, the three-phase sides two coils with the ratio of

turns, 1 -. JT-, connected in T.
m

9. The double delta connection of transformation from three-

phase to six-phase, shown in Fig. 215. Three transformers, with

two secondary coils each, are used, one set of secondary coils

connected in delta, the other set in delta also, but with reversed
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terminals, so as to give a reversed e.m.f. triangle. These e.m.fs.

thus give topographically a six-cornered star.

A i' UmlLMaAfli

RP1
Y

TI I

n m I

I 2

FIG. 215.

10. The double Y connection or diametrical connection of trans-

formation from three-phase to six-phase, shown in Fig. 216. It

FIG. 216.

is analogous to (7), the delta connection merely being replaced

by the Y connection. The neutrals of the two Y's may be con-

nected together and to an external neutral if desired.

/ A4A m
L

I
I

100

3'

FIG. 217.

The primaries in 9 and 10 may be connected either delta or Y,
and in the latter case a floating neutral must be guarded against.
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11. The double T connection of transformation from three-

phase to six-phase, shown in Fig. 216. Two transformers are

used with two secondary coils which are T-connected, but one

with reversed terminals. This method also allows a secondary
neutral to be brought out.

293. Transformation with a change of the balance-factor of

the system is possible only by means of apparatus able to store

energy, since the difference of energy between primary and

secondary circuit has to be stored at the time when the secondary

power is below the primary, and returned during the time when
the primary power is below the secondary. The most efficient

storing device of electric energy is mechanical momentum in re-

volving machinery. It has, however, the disadvantage of re-

quiring attendance; fairly efficient also are condensive and in-

ductive reactances, but, as a rule, they have the disadvantage of

not giving constant potential.



CHAPTER XXXIII

EFFICIENCY OF SYSTEMS

294. In electric power transmission and distribution, wherever

the place of consumption of the electric energy is distant from

the place of production, the conductors which carry the current

are a sufficiently large item to require consideration, when decid-

ing which system and what potential is to be used.

In general, in transmitting a given amount of power at a given
loss over a given distance, other things being equal, the amount
of copper required in the conductors is inversely proportional to

the square of the potential used. Since the total power trans-

mitted is proportional to the product of current and e.m.f., at a

given power, the current will vary inversely proportionally to

the e.m.f., and therefore, since the loss is proportional to the

product of current-square and resistance, to give the same loss the

resistance must vary inversely proportional to the square of the

current, that is, proportional to the square of the e.m.f.; and
since the amount of copper is inversely proportional to the resist-

ance, other things being equal, the amount of copper varies in-

versely proportional to the square of the e.m.f. used.

This holds for any system.
Therefore to compare the different systems, as two-wire single-

phase, single-phase three-wire, three-phase and quarter-phase,

equality of the potential must be assumed.

Some systems, however, as, for instance, the Edison three-

wire system, or the inverted three-phase system, have different

potentials in the different circuits constituting the system, and

thus the comparison can be made either

1st. On the basis of the maximum potential difference between

any two conductors of the system ;
or

2nd. On the basis of the maximum potential difference between

any conductor of the system and the ground ;
or

3rd. On the basis of the minimum potential difference in the

system, or the potential difference per circuit or phase of the

system.
431
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In low-potential circuits, as secondary networks, where the

potential is not limited by the insulation strain, but by the

potential of the apparatus connected into the system, as incan-

descent lamps, the proper basis of comparison is equality of the

potential per branch of the system, or per phase.

On the other hand, in long-distance transmissions where the

potential is not restricted by any consideration of apparatus
suitable for a certain maximum potential only, but where the

limitation of potential depends upon the problem of insulating

the conductors against disruptive discharge, the proper com-

parison is on the basis of equality of the maximum difference

of potential; that is, equal maximum dielectric strain on the

insulation.

In this case, the comparison voltage may be either the poten-
tial difference between any two conductors of the system, or

it may be the potential difference between any conductor of

the system and the ground, depending on the character of the

circuit.

The dielectric stress is from conductor to conductor, or be-

tween any two conductors, in a system which is insulated from

the ground, as is mostly the case in medium voltage overhead

transmissions, and frequently in underground cables.

In an ungrounded cable system, in which all the conductors

are enclosed in the same cable, the insulation stress is mainly
from conductor to conductor, and this therefore is the basis of

comparison. But even in an underground cable system with

grounded neutral, as very commonly used, a direct path exists

from conductor to conductor inside of the cables, for a disrup-

tive voltage, and the comparison of systems, therefore, has to be

made, in this case, on the basis of maximum potential difference

between conductors as well as between conductor and ground.
In an ungrounded overhead system, the disruptive stress is

from conductor to ground and back from ground to conductor.

If the system is of considerable extent as is the case where high

voltages of serious disruptive strength have to be considered

the neutral of the system is maintained at approximate ground

potential by the capacity of the system, and the normal voltage

stress from conductor to ground therefore is that from conductor

to neutral, that is, the same as in a system with grounded neutral,

and the basis of comparison then is the voltage from line to

ground, and not between lines. Since, however, one conductor
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of the system may temporarily ground, if it is required to main-

tain operation even with one conductor of the system grounded,
the voltage between conductors must be the basis of comparison,
since with one conductor grounded, the disruptive stress between

the other conductors and ground is the potential difference be-

tween the conductors of the system.

In an overhead system with grounded neutral, frequently used

for transmission systems of very high voltage, or in general in a

grounded system, the disruptive stress is that due to the potential

difference between conductor and ground or neutral, and this

then is the basis of comparison.
In moderate-potential power circuits, in considering the danger

to life from live wires entering buildings or otherwise accessible,

the comparison on the basis of maximum potential also appears

appropriate.

Thus the comparison of different systems of long-distance

transmission at high potential or power distribution for motors

is to be made on the basis of equality of the maximum difference

of potential existing in the system ;
the comparison of low-poten-

tial distribution circuits for lighting on the basis of equality of

the minimum difference of potential between any pair of wires

connected to the receiving apparatus.
295. 1st. Comparison on the basis of equality of the minimum

difference of potential, in low-potential lighting circuits:

In the single-phase, alternating-current circuit, if e = e.m.f.,

i = current, r = resistance per line, the total power is = ei
}
the

loss of power, 2 i*r.

Using, however, a three-wire system: the potential between

outside wires and neutral being given equal to e, the potential

between the outside wires is equal to 2 e
}
that is, the distribution

takes place at twice the potential, or only one-fourth the copper
is needed to transmit the same power at the same loss, if, as it is

theoretically possible, the neutral wire has no cross-section. If,

however, the neutral wire is made of the same cross-section as

each of the outside wires, three-eighths as much copper as in the

two-wire system is needed; if the neutral wire is one-half the

cross-section of each of the outside wires, five-sixteenths as much

copper is needed. Obviously, a single-phase, five-wire system
will be a system of distribution at the potential, 4 e, and there-

fore require only one-sixteenth of the copper of the single-phase

system in the outside wires; and if each of the three neutral
28
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wires is of one-half the cross-section of the outside wires, seven-

sixty-fourths or 10.93 per cent, of the copper.

Coming now to the three-phase system with the potential, e,

between the lines as delta potential, if i = the current per line

or Y current, the current from line to line or delta current =
=;

and since three branches are used, the total power is = = eii \/3-
V3

Hence if the same power has to be transmitted by the three-

phase system as with the single-phase system, the three-phase

line current must be i\ = -^; where i = single-phase current,

r = single-phase resistance per line, at equal power and loss:

hence if r\ = resistance of each of the three wires, the loss per

wire is i<?r\ = -5-, and the total loss is iVi, while in the single-o

phase system it is 2 i
z
r. Hence, to get the same loss, it must be:

7*1
= 2 r, that is, each of the three three-phase lines has twice the

resistance that is, half the copper of each of the two single-

phase lines; or in other words, the three-phase system requires

three-fourths as much copper as the single-phase system of the

same potential.

Introducing, however, a fourth or neutral wire into the three-

phase system, and connecting the lamps between the neutral

wire and the three outside wires that is, in Y connection the

potential between the outside wires or delta potential will be
= e X \/3, since the Y potential =

e, and the potential of the

system is raised thereby from eio e\/3; that is, only one-third

as much copper is required in the outside wires as before that

is one-fourth as much copper as in the single-phase two-wire sys-

tem. Making the neutral of the same cross-section as the out-

side wires, requires one-third more copper, or ^ = 33.3 per cent.

of the copper of the single-sphase sytem; making the neutral

of half cross-section, requires one-sixth more, or /^ = 29.17 per

cent, of the copper of the single-phase system. The system,

however, now is a four-wire system.
The independent quarter-phase system with four wires is

identical in efficiency to the two-wire, single-phase system, since

it is nothing but two independent single-phase systems in quad-
rature.

The four-wire, quarter-phase system can be used as two inde-
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pendent Edison three-wire systems also, deriving therefrom the

same saving by doubling the potential between the outside wires,
and has in this case the advantage, that by interlinkage, the same
neutral wire can be used for both phases, and thus one of the

neutral wires saved.

In this case the quarter-phase system with common neutral of

full cross-section requires yV or 31.25 per cent., the quarter-phase

system with common neutral of one-half cross-section requires

-V or 28.125 per cent, of the copper of the two-wire, single-phase

system.
In this case, however, the system is a five-wire system, and

as such far inferior in copper efficiency to the five-wire, single-

phase system.

Coming now to the quarter-phase system with common return

and potential e per branch, denoting the current in the outside

wires by i%, the current in the central wire is 2*2\/2; and if the

same current density is chosen for all three wires, as the condition

of maximum efficiency, and the resistance of each outside wire

denoted by r<z, the resistance of the central wire =
^=.,

and the
v 2

2 i
z
zr

2

loss of power per outside wire is i^r2) in the central wire j=-V2
= fVr^2 ; hence the total loss of power is 2 i^r^ + *2

2
/*2\/2

= 1*2^2(2 + \/2). The power transmitted per branch is i&,
hence the total power, 2 t"2e. To transmit the same power as by

a single-phase system of power, ei, it must be i% = 75-; hence the
A

loss,
-

j
. Since this loss shall be the same as the loss,

2 i
z
r, in the single-phase system, it must be 2 r = -: r2 ,

or r2 = ~ Therefore each of the outside wires must be

2 -f \/2
g

- times as large as each single-phase wire, the central

wire \/~2 times larger; hence the copper required for the quarter-

phase system with common return bears to the copper required
for the single-phase system the relation,

2(2+ \/2) (2+x/2)V"2 3 + 2 /2
-g-

- + -

-g~ -2, or,
-

-g- --M, = 72.9

per cent, of the copper of the single-phase system.
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Hence the quarter-phase system with common return saves 2

per cent, more copper than the three-phase system, but is inferior

to the single-phase three-wire system.

The inverted three-phase system, consisting of two e.m.fs. e at

60 displacement, and three equal currents is in the three lines

of equal resistance r3 , gives the output 2 ei s ,
that is, compared

with the single-phase system, iz = -5- The loss in the three lines
Zi

is 3 ^3
2r3 = | i

z
r$. Hence, to give the same loss, 2 i

z
r, as the

single-phase system, it must be r3
= f r, that is, each of the three

wires must have three-eighths of the copper cross-section of the

wire in the two-wire single-phase system; or in other words, the

inverted three-phase system requires nine-sixteenths of the cop-

per of the two-wire single-phase system.

Thus if a given power has to be transmitted at a given loss,

and a given minimum potential, as for instance 110 volts for

lighting, the amount of copper necessary is:

2 WIRES: Single-phase system, 100.0

3 WIRES: Edison three-wire single-phase system,

neutral full section, 37 . 5

Edison three-wire single-phase system,

neutral half-section, 31.25

Inverted three-phase system, 56 . 25

Quarter-phase system with common re-

turn, 72.9

Three-phase system, 75 .

4 WIRES : Three-phase, with neutral-wire full sec-

tion, 33.3

Three-phase, with neutral-wire half-

section, 29.17

Independent quarter-phase system, 100 .

5 WIRES: Edison five-wire, single-phase system,

full neutral, 15.625

Edison five-wire, single-phase system,

half-neutral, 10.93

Four-wire, quarter-phase, with com-

mon-neutral full section, 31.25

Four-wire, quarter-phase, with com-

mon-neutral half-section, 28.125

We see herefrom, that in distribution for lighting that is,

with the same minimum potential, and with the same number
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of wires the single-phase system is superior to any polyphase

system.
The continuous-currentsystem is equivalent in this comparison to

the single-phase alternating-current system of the same effective

potential, since the comparison is made on the basis of effective

potential, and the power depends upon the effective potential also.

296. Comparison on the Basis of Equality of the- Maximum
Difference of Potential between any two Conductors of the System,
in Long-distance Transmission, Power Distribution, etc.

Wherever the potential is so high as to bring the question of

the strain on the insulation into consideration, or in other cases,

to approach the danger limit to life, the proper comparison of

different systems is on the basis of equality of maximum poten-
tial in the system.

Hence in this case, since the maximum potential is fixed, noth-

ing is gained by three- or five-wire, Edison systems. Thus, such

systems do not come into consideration.

The comparison of the three-phase system with the single-

phase system remains the same, since the three-phase system
has the same maximum as minimum potential; that is:

The three-phase system requires three-fourths of the copper
of the single-phase system to transmit the same power at the

same loss over the same distance.

The four-wire, quarter-phase system requires the same amount
of copper as the single-phase system, since it consists of two

single-phase systems.

In a quarter-phase system with common return, the potential

between the outside wires is \/~2 times the potential per branch,

hence to get the same maximum strain on the insulation that is,

the same potential, e, between the outside wires as in the single-
/>

phase system the potential per branch will be 7=, hence the
V 2

<j

current n = 7=. if i equals the current of the single-phase sys-V 2

tern of equal power, and it\/2 = i will be the current in the

central wire.

Hence, if r 4
= resistance per outside wire,

- = resistance of
V 2

central wire, and the total loss in the syst.em is

.
2 ,-2 ? 4

2r 4 H---7=-
= 2 4V 4(2 + V 2).
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Since in the single-phase system, the loss = 2 2
2
r, it is

4r
r 4
=

V2
That- is, each of the outside wires has to contain

^
times

as much copper as each of the single-phase wires. The central

wires have to contain 7 \/2 times as much copper; hence

the total system contains
j

'

- + - -~ \/2 times as

2 i 2 -\/~2
much copper as each of the single-phase wires

;
that is, -r

n

times the copper of the single-phase system.

Or, in other words,

A quarter-phase system with common return requires

= 1.457 times as much copper as a single-phase system of the

same maximum potential, same power, and same loss.

Since the comparison is made on the basis of equal maximum
potential, and the maximum potential of an alternating system is

V2 times that of a continuous-current circuit of equal effective

potential, the alternating circuit of effective potential, e, com-

pares with the continuous-current circuit of potential e \/2,
which latter requires only half the copper of the alternating

system.
This comparison of the alternating with the continuous-cur-

rent system is not proper, however, since the continuous-current

voltage may introduce, besides the electrostatic strain, an elec-

trolytic strain on the dielectric which does not exist in the alter-

nating system, and thus may make the action of the continuous-

current voltage on the insulation more severe than that of an

equal alternating voltage. Besides, self-induction having no

effect on a steady current, continuous-current circuits as a rule

have a self-induction far in excess of any alternating circuit.

During changes of current, as make and break, and changes of

load, especially rapid changes, there may consequently be gen-

erated in these circuits e.m.fs. far exceeding their normal poten-
tials. Inversely, however, with alternating voltages, dielectric

hysteresis, etc., may cause heating and thereby lower the

disruptive strength. At the voltages which came under con-

sideration, the continuous current is usually excluded to begin
with.
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Thus we get:

If a given power is to be transmitted at a given loss, and a

given maximum difference of potential in the system, that is,

with the same strain on the insulation, the amount of copper
required is:

2 WIRES: Single-phase system, 100.0

[Continuous-current system, 50 . 0]

3 WIRES: Three-phase system, 75.0

Quarter-phase system, with common
return, 145 . 7

4 WIRES: Independent Quarter-phase system, 100.0

Hence the quarter-phase system with common return is prac-

tically excluded from long-distance transmission.

297. In a different way the same comparative results be-

tween single-phase, three-phase, and quarter-phase systems can

be derived by resolving the systems into their single-phase
branches.

The three-phase system of e.m.f., e, between the lines can be

considered as consisting of three single-phase circuits of e.m.f.,
p

,
and no return; the single-phase system of e.m.f., e, between

^
lines as consisting of two single-phase circuits of e.m.f., ~ > and

A

no return. Thus, the relative amount of copper in the two sys-

tems being inversely proportional to the square of e.m.f., bears

/\/3\ 2
/2\

2

the relation
(

--
) :(-) =3 :4; that is, the three-phase sys-

\ 6 I \6 /

tern requires 75 per cent, of the copper of the single-phase system.
The quarter-phase system with four equal wires requires the

same copper as the single-phase system, since it consists of two

single-phase circuits. Replacing two of the four quarter-phase
wires by one wire of the same cross-section as each of the wires

replaced thereby, the current in this wire is \/2 times as large

as in the other wires, hence, the loss is twice as large that is,

the same as in the two wires replaced by this common wire, or

the total loss is not changed while 25 per cent, of the copper is

saved, and the system requires only 75 per cent, of the copper of

the single-phase system, but produces \/2 times as high a poten-
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tial between the outside wires. Hence, to give the same maxi-

mum potential, the e.m.fs. of the system have to be reduced by
\/2 ,

that is, the amount of copper doubled, and thus the quarter-

phase system with common return of the same cross-section as

the outside wires requires 150 per cent, of the copper of the single-

phase system. In this case, however, the current density in the

middle wire is higher, thus the copper not used most economically,
and transferring a part of the copper from the outside wires to

the middle wire, to bring all three wires to the same current den-

sity, reduces the loss, and thereby reduces the amount of copper
at a given loss, to 145.7 per cent, of that of a single-phase system.

298. Comparison on the basis of equality of the maximum differ-

ence of potential between any conductor of the system and the ground,
in long-distance, three-phase transmissions with grounded neutral,

single-phase systems with ground return, etc.

A system may be grounded by grounding its neutral point,

for the purpose of maintaining constant-potential difference be-

tween the conductors and ground, without carrying any current

through the ground, or the ground may be used as return con-

ductor. In either case the system can be considered as consist-

ing of and resolved into as many single-phase systems with

ground return, as there are overhead conductors, and with zero

resistance in the ground.
It immediately follows herefrom, that the copper efficiency of

such a system is the same as that of a single-phase system with

ground return, of the same voltage as exists between conductor

and ground of the system under consideration. If then all the

overhead conductors have the same potential difference against

ground, as is the case in a three-phase or quarter-phase system
with grounded neutral, a single-phase system with grounded

neutral, or quarter-phase system with common ground return of

both phases, the copper efficiency is the same. That is:

All grounded systems, whether with grounded neutral or with

ground return, have the same copper efficiency, provided that

all the overhead conductors have the same potential difference

against ground.
Hence:

The three-phase system with grounded neutral has- no supe-

riority over the single-phase or the quarter-phase system with

grounded neutral, in copper efficiency. The advantage of the

three-phase system which causes its practically universal use
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over the single-phase system is the greater usefulness of polyphase

power, the advantage over the quarter-phase system is the use

of three conductors, against four with the quarter-phase system.
No saving in copper results from the use of the ground (of

zero resistance) as return circuit, but a single-phase or quarter-

phase system with ground return, at equal dielectric strain on

the insulation, requires the same amount of copper as a system
with grounded neutral, but has a greater self-induction, due to

the greater distance between conductor and return conductor or

ground, and has the objection of establishing current through
the ground and so disturbing neighboring circuits, by electro-

magnetic and electrostatic induction.

The apparent saving in copper, in the single-phase system, by
replacing one of the conductors by the ground as return, there-

fore is a fallacy. By doing so, the potential difference of the other

conductors against ground becomes twice what it would be with

two conductors and grounded neutral, and at the same potential
difference between conductors. That is, the single-phase system
with ground return requires the same insulation as a single-phase

system with grounded neutral, of twice the voltage, and then re-

quires the same copper. A saving results only in the number of

insulators required, etc. Only where the amount of power is so

small that mechanical strength, and not power loss, determines

the size of the conductor, a saving results by replacing one of the

conductors by the ground.
The high-tension, direct-current system, whether insulated, or

with grounded neutral, or with ground return, appears equal in

copper efficiency to a single-phase system of the same character

(insulated, or with grounded neutral, or with ground return) and

of the same effective voltage, that is, with a sine wave of a maxi-

mum voltage V2 times that of the direct current. Due to the

different character of unidirectional electric stress of the direct-

current system, from the alternating stress, a general comparison
of the system by a numerical factor appears hardly feasible. It

is, however, claimed that usually the insulation stress with per-

fectly uniform continuous voltage is less than that of an alter-

nating voltage of the same maximum value, so that continuous-

current high-voltage transmission would offer advantages, if it

were not for the difficulty of generating and utilizing very high
continuous voltages, which with alternating voltages is overcome

by the interposition of the stationary transformer.



CHAPTER XXXIV

METERING OF POLYPHASE CIRCUIT

299. The power of a polyphase system or circuit is the sum of

the powers of all the individual branch circuits, and the sum of

the wattmeter readings of all the branch circuits thus gives the

total power.

Let, then, in a general polyphase system, e\, 62, 63 . . . en =

potentials at the n terminals or supply wires of the r?-phase

system.

These may be represented topographically by points in a plane,

as shown in Fig. 218.

FIG. 218.

The voltage between any two terminals e* and ek then is:

eik = e< ek (1)

And this voltage, in any circuit connected between these two

terminals, produces a current, iik ,
as the current, which flows from

6i to 6k through this circuit.

As there are ~ pairs of terminals i and e k ,
there are

z

existing in a general n-phase system -= different phases,
A

and there may thus be -

t different circuits, or rather sets
z

442
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of circuits since a number of circuits may and usually are con-

nected between the n terminals.

Consider one of these numerous circuits of the general n-phase

system, that of the current {& passing from d to ek . The power
of this circuit is:

Pik =
[ei

- ek ,
iik ] (2)

where the brackets denote the effective power, as discussed in

Chapter XVI.

Choosing any point ex ,
which may be one of the terminals, or

the neutral point of the system, if such exists, or any other point.

Then the voltage e t
- ek can be resolved by the parallelogram

(Fig. 218) into the voltages: e^ ex and ex e^,

that is:

ei ek = 6i ex + ex ek (3)

hence, substituted into (2) :

Pik
=

[(ei
-

xe) + (ex
- ek), i ik ]

=
[ei
- ex ,

i ik ] + [ex
- ek ,

i ik] (4)

It is, however:

[ex ek , iik]
=

[ek ex ,
iki] (5)

where iki is the current flowing from ek to ei} that is, the same cur-

rent as iikt only considered in the reverse direction.

Thus it is, substituting (5) into (4) :

Pik =
[ei ex ,

iik] + [ek ex ,
iki] (6)

That is, the power of any branch circuit between two terminals,

6i and ek) is the product of the powers giving by the two potential

differences e ex and ek ex,
of any arbitrarily chosen point

ex ,
with the current flowing into this branch circuit from the two

terminals, e and ek ,
that is, iik and 4i, respectively.

300. The total power of the n-phase system, as the sum of the

powers of all the branch circuits, then is:

= S.' [e {
- ex ,

i ik ] (7)
i i

where the double summation sign indicates that the summation
is to be carried out for all values of k, from 1 to n, and for all

values of i, from 1 to n.
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As the term e ex in (7) does not contain the index k, it is

the same for all values of k, thus can be taken out from the second

summation sign, that is:

P = S' L - ef ,
2* iJ (8)

However :

n

2* i ik is the sum of all the currents, flowing from the termi-
i

nal 6i to all the other terminals eh (k
=

1, 2 . . n), that is, it is

the total current issuing from the terminal e t ,
or:

it = 2* iit (9)
i

and, substituting this in 9, gives as the total power of the n-phase

system :

P = Si [a
- ex , i,] (10)

i

That is:

"The total power of a general n-phase system, is the sum of the

n powers, given by the n currents ii, which issue from the n

terminals e^ with the n potential differences of these terminals e.

against any arbitrarily chosen point ex."

"The total power of the system, no matter how many branch cir-

cuits it contains, thus is measured by n wattmeters.

Choosing as the point, ex one of the n-phase circuit terminals,

that is one of the phase potentials (for instance, the neutral

potential of the system, where such exists), as en,
the number of

terms in (10) reduces by one:

P =
n

2i[ei
-

e^ii] (11)
i

That is:

"The total power of a general n-phase s-ystem is measured by

n I wattmeters, connected between one terminal en and the n 1

other terminals e\"
Thus for instance, a five-wire, four-phase system (Fig. 195),

5X4
in which

^
= 10 different sets of circuits are possible, is

metered by 5 1 = 4 meters.

A four-wire, three-phase system is metered by 3 meters.

A three-wire, three-phase system is metered by 2 meters.
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301. In a three-phase system with ungrounded neutral, that

is, a three-wire, three-phase system, the common method of

measuring the total power thus is, by (11), as shown in Fig. 219.

Often the two meters of Fig. 219 are arranged in one structure.
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and their sum is:

P = [Ei, Ii]
~

= [E lt h] -

and since by (12) :

/J - [E /,] + [Ei, /,]

+ 0,, I 2 ] + [E3 ,
/j

(14)

it is:

P =
3, /a]

that is, the total power of the three-phase system is the sum of

the individual powers of the three branch circuits.

302. In the standard polyphase wattmeter connection of the

three-wire, three-phase system, Fig. 219, the voltage coils are

out of phase with the current coils at non-inductive load, the one

lagging, the other leading by 30. Therefore, even in a balanced

FIG. 221.

system, if the current lags, the two wattmeter coils do not read

alike, as the voltmeter coil in the one lags by the angle of lag of

the current plus 30, and in the other by the angle of lag minus

30. At 60 angle of lag, the voltage coil of the former lags

60 + 30 = 90, and the reading becomes zero, and at more than

60 lag, the one meter reads negative, but the algebraic sum of the

two meter readings still remains the total power of the circuit,

the one meter reading more than the total power, while the other

meter reads negative.
In a balanced, or nearly balanced three-wire, three-phase sys-

tem, instead of connecting the potential coils from a and 6 to c,

Figs. 219 and 220, they are often connected from a to b. This

interchanges the lagging and the leading coil, but on balanced

loads leaves the same total. In this case, one voltage coil only

may be used, acted upon by two current coils. That is, a single-

phase wattmeter is constructed, similar to the Edison three-wire
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meter, with one current coil in the one, the other current coil in

the other line, and the voltage coil connected between these two

lines, as shown in Fig. 221.

If there is considerable unbalancing, this latter connection

gives considerable error, and the double meter has to be used.



CHAPTER XXXV

BALANCED SYMMETRICAL POLYPHASE SYSTEMS

303. In most applications of polyphase systems the system is a

balanced symmetrical system, or as nearly balanced as possible.

That is, it consists of n equal e.m.fs. displaced in phase from each

other by period, and producing equal currents of equal phase

displacement against their e.m.fs. In such systems, each e.m.f.

and its current can be considered separately as constituting a

single-phase system, that is, the polyphase system can be resolved

into n equal single-phase systems, each of which consists of one

conductor of the polyphase system, with zero impedance as return

circuit. Hereby the investigation of the polyphase system
resolves itself into that of its constituent single-phase system.

So, for instance, the polyphase system shown in Fig. 208, at

balanced load, can be considered as consisting of the equal single-

phase systems :0 1;0 2; 3; . . . r&, each of

which consists of one conductor, 1, 2, 3, . . . n, and the return

conductor, 0. Since the sum of all the currents equals 0, there is

no current in conductor 0, that is, no voltage is consumed in this

conductor; this is equivalent to assuming this conductor as of

zero impedance. This common return conductor, 0, since it

carries no current, can be omitted, as is usually the case. With
star connection of an apparatus into a polyphase system, as in

Fig. 200, the impedance of the equivalent single-phase system is

the impedance of one conductor or circuit; if, however, the appa-
ratus is ring connected, as shown diagrammatically in Fig. 201,

the impedance of the ring-connected part of the circuit has to

be reduced to star connection, in the usual manner of reducing

a circuit to another circuit of different voltage, by the ratio

ring voltages .

star voltage'

or, as these voltages are usually called in a three-phase system,

_ delta voltage

Y voltage
448
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That is, all ring voltages are divided, all ring currents multiplied

with c; all ring impedances are divided, all ring admittances

multiplied with the square of the ratio, c2 .

For instance, if in a three-phase induction motor with delta-

connected circuits, the impedance of each circuit is

Z = r + jx,

and the voltage impressed upon the circuit terminals E, and the

motor is supplied over a line of impedance, per line wire,

ZQ = r + JX ,

the motor impedance, reduced to star connection, or Y impe-

dance, is

,
r 4- jx 1

t . AZ' = r ^
=

3 (r+jx)-t

and the impressed voltage, reduced to Y circuit,

Ew -
?

-
vf ,

I

and the total impedance of the equivalent single-phase circuit is

therefore

Z + Z' =
(r + jxo) + (r + jx).

Inversely, however, where this appears more convenient, all

quantities may be reduced to ring or delta connection, or one of

the ring connections considered as equivalent single-phase circuit,

of impedance
Z + c 2Z =

(r + jx) + 3(r + jx ).

Since the line impedances, line currents and the voltages con-

sumed in /the lines of a polyphase system are star, or (in a three-

phase system) Y quantities, it usually is more convenient to

reduce all quantities to Y connection, and use one of the F-cir-

cuits as the equivalent single-phase circuit.

304. As an example may be considered the calculation of a

long-distance transmission line, delivering 10,000 kw., three-phase

power at 60 cycles, 80,000 volts and 90 per cent, power-factor at

100 miles from the generating station, with approximately 10 per
cent, loss of power in the transmission line, and with the line

conductors arranged in a triangle 6 ft. distant from each other.
29
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10,000 kw. total power delivered gives 3,333 kw. per line or

single-phase branch (F power).

3,333 kw. at 90 per cent, power-factor gives 3,700 kv.-amp.

80,000 volts between the lines gives 80,000 -^ \/3 = 46,100
volts from line to neutral, or per single-phase circuit.

3,700 kv.-amp. per circuit, at 46,100 volts, gives 80 amp. per

line.

10 per cent, loss gives 333 kw. loss per line, and at 80 amp., this

gives a resistance per line,

333,000 -f- 80 2 = 52 ohms,

or, 0.52 ohms per mile.

The nearest standard size of wire is No. B. & S., which has a

resistance of 0.52 ohms, and a weight of 1680 Ib. per mile.

Choosing this size of wire so requires for the 300 miles of line

conductor, 300 X 1680 = 500,000 Ib. of copper.

At 0.52 ohms per mile, the resistance per transmission line or

circuit of 100 miles length is,

r = 52 ohms.

The inductance of wire No. 0, with d = 0.325 in. diameter, and

6 ft. = 72 in. distance from the return conductor, is calculated

from the formula of line inductance 1
as, 2.3 mil-henrys per mile;

hence, per circuit,

L = 0.23 henry,

and herefrom the reactance,

27T/L

88 ohms.

The capacity of the transmission line may be calculated directly,

or more conveniently it may be derived from the inductance. If

C is the capacity of the circuit, of which the inductance is L, then

4vc
is the fundamental frequency of oscillation, or natural period,

that is, the frequency which makes the length, I, of the line a

quarter-wave length.

Since the velocity of propagation of the electric field is the ve-

1 "Theoretical Elements of Electrical Engineering."
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locity of light, v, with a wave-length, 4 I, the number of waves per

second, or frequency of oscillation of the line, is

fi
= n

and herefrom then follows:

L 1 *

i ""VLC'
hence, for

I = 100 miles,

v = 186,000 miles per second,

L = 0.23 henry,
C = 1.26 mf.

and the capacity susceptance,

b = 2 TT/C = 475 X 10- 6
.

Representing, as approximation, the line capacity by a con-

denser shunted across the middle of the line

We have, impedance of half the line,

Z =
2

-h j
g"

= 26 + 44 j ohms.

Choosing the voltage at the receiving end as zero vector,

e = 46,100 volts,

at 90 per cent, power-factor and therefore 43.6 per cent, induc-

tance factor, the current is represented by

I = 80 (0.9
- 0.436 j) =72-35 j.

1 Or, if
fj.
= permeability, K = dielectric constant of the medium sur-

rounding the conductor, it is

v

hence,

f
=
Mi?

or,

C =
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This gives:

Voltage at receiver circuit, e = 46,100 volts;

current in receiver circuit, / = 72 35 j amp. ;

impedance voltage of half the line, ZI = 3410 + 2260 j volts.

Hence, the condenser voltage, Ei = e + ZI = 49,510 + 2260 j

volts
;

and the condenser current, + jbEi = 1.1 -f 23.8 j amp.;

hence, the total, or generator current, 7 = / + jbEi = 70.9

11.2 j amp.
The impedance voltage of the other half of the line, Z/ =

2330 - 2830 j volts;

hence, the generator voltage, E = EI + ZIQ
= 51,840 + 5090

j volts;

and the phase angle of the generator current,

tan 0i=^ = 0.158; 0i = 9.0

The phase angle of the generator voltage,

5090
tan 2

= - = -
0.098; 2

= - 5.6;

the lag of the generator current, = 0i 2
= 14.6;

hence the power-factor at the generator, cos = 96.7 per cent.

And the power output, 3 [/, e]
1 = 10,000 kw.;

the power input, 3 [/ , ^o]
1 = 11,190 kw.;

the efficiency
= 89.35 per cent.;

the volt-ampere output, 3 ie = 11,110 kv.-amp.;
the volt-ampere input, 3 i^ = 11,220 kv.-amp.;

ratio: = 99.02 per cent.

And the absolute values are:

receiver current, i = 80 amp. ;

receiver voltage, e = 46,100 X \/3 = 80,000 volts;

generator current, iQ = 71.8 amp.;

generator voltage, eQ = 52,100 X \/3 = 90,000 volts;

voltage drop in line,
= 11.1 per cent.

305. Balanced polyphase systems thus can be calculated as

single-phase systems, and this has been done in many preceding

chapters, as in those on the induction machines, synchronous

machines, etc., that is, apparatus which is usually operated on

polyphase circuits.
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Only in dealing with those phenomena which are resultants of

all the phases of the polyphase system, in the resolution of the

polyphase system into its constituent single-phase systems the

effective value of the constant has to be used, which corresponds

to the resultant effect. This, for instance, is the case in calcu-

lating the magnetic field of the induction machine which is

energized by the combination of all phases or the armature

reaction of synchronous machines, etc.

For instance, in the induction machine, from the generated

e.m.f., e in Chapter XVIII the magnetic flux of the machine

is calculated, and from the magnetic flux and the dimensions of

the magnetic circuit: length and section of air-gap, and length and

section of the iron part, follows the ampere-turns excitation, that

is, the ampere turns, FQ, required to produce the magnetic flux.

The resultant m.m.f. of m equal magnetizing coils displaced

in position by :L
cycle, energized by m equal currents of an

m-phase system, is given by 271 as

nml
r o
= 7=
\/2

where

I = current per phase, or per magnetizing coil,

n = number of turns per coil,

m = number of phases.

The exciting current per phase required to produce the resulting

m.m.f., FQ, therefore, is

T1 =
nm

hence, for a three-phase system,

and for a quarter-phase system, with two coils in quadrature,

In the investigation of the armature reaction of synchronous

machines, Chapter XXII, the armature reaction of an m-phase
machine is, by 271,

F =
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where

m number of phases,

no = number of turns per phase, effective, that is, allow-

ing for the spread of turns over an arc of the periph-

ery in machines of distributed winding,
I = current per phase,

and when, in Chapter XX, the armature reaction is given by nl,

the number of effective turns, n, is, accordingly, for a polyphase

alternator,
m

hence, in a three-phase machine,

n = ~ = 1.5 nQ

V2

in a quadrature-phase machine,

n = UQ -\/2-

306. When replacing a balanced symmetrical polyphase system

by its constituent single-phase systems, it must be considered,

that the constants of the constituent single-phase circuit may not

be the same which this circuit would have as independent single-

phase circuit.

If the branches of the polyphase circuit, which constitute

the equivalent single-phase circuits, are electrically or magnetic-

ally interlinked, the constants, as admittance, impedance, etc.,

of the equivalent single-phase circuit often are different from

those of the same circuit on single-phase supply, and the poly-

phase values then must be used in the equivalent single-phase
circuits which replace the polyphase system.

This is the case in induction machines, in the armatures of

synchronous machines, etc., where the phases are in mutual in-

duction with each other.

Let, in a star or Y-connected three-phase induction motor:

Y = g
-

jb

be the exciting admittance and e the impressed voltage per three-

phase Y circuit or constituent single-phase circuit.
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The exciting current per circuit then is:

I = eY

or, absolute:

i = ey

if n = number of turns per circuit,

/ = ni = effective value of the m.m.f. per phase, and
F= 1.5 X \/2 ni = resultant m.m.f. of all three phases.

F then produces in the magnetic circuit the flux
<f>, which con-

sumes the impressed voltage e.

Assuming now, that instead of impressing three three-phase

voltage e on the three constituent single-phase circuits of the

motor, we impress only a single-phase voltage e on one of the

three circuits.

, The current in this circuit then must produce the same flux $,

and have the same maximum m.m.f. F, as was given by the re-

sultant of all three phases.

With n turns, that means, the current ii under the single-

phase e.m.f. e is given by:

F = \/2 nil

and since we had, under the same voltage e and flux <, three-

phase :

F = 1.5 V2W
it follows:

ii = 1.5 i

That is, with a single-phase voltage, e, the current, ii, and thus

the admittance, YI, of the circuit, is 1.5 times the current, i, and

thus the admittance, F, which is produced in the same circuit

by the three-phase voltage:

Fi = 1.5 T
or:

Y = % F!

That is:

If we measure the admittance of one of the motor circuits by
single-phase supply voltage, this is not the admittance of this

circuit as constituent single-phase circuit of the three-phase

motor, but

The admittance of the constituent or equivalent single-phase
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circuit of a three-phase induction motor is two-thirds of the ad-

mittance of this same circuit as independent single-phase circuit.

We can look at this in a different way:
As the three-phase circuits combine to a resultant which is

1.5 times the m.m.f. of each circuit, each circuit requires only

two-thirds of the m.m.f., and thus two-thirds of the exciting

admittance, as equivalent single-phase circuit of a three-phase

motor, which it would require, if as independent single-phase

circuit it had to produce the entire m.m.f.

307. The same applies to the self-inductive reactance: as the

self-inductive or leakage flux, which consumes the reactance

voltage, is produced by the resultant of the currents of all three

phases, and this resultant is 1.5 times the maximum of one phase,

each phase produces only two-thirds, that is, the impedance
current of each phase of the motor on three-phase voltage supply
is only two-thirds that of the same circuit at the same voltage

of single-phase supply, and the impedance thus is % = 1.5

times.

That is:

The effective admittance of the equivalent or constituent sin-

gle-phase circuit of a three-phase induction machine is two-thirds

of the admittance, and the effective impedance is 1.5 times the

impedance of this circuit as independent single-phase circuit.

The same applies to synchronous machines:

The three-phase synchronous reactance per armature circuit,

that is, the synchronous reactance of this armature circuit as

equivalent single-phase circuit of the three-phase system, is

1.5 times the single-phase synchronous reactance of the same

armature circuit, that is, synchronous reactance of this circuit

as single-phase machine.

In dealing with the constituent single-phase circuits of a three-

phase system, the proper
"
three-phase

"
values of the constants

of the equivalent circuit must be used.
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THREE-PHASE SYSTEM

308. With equal load of the same phase displacement in all

three branches, the symmetrical three-phase system offers no

special features over those of three equally loaded single-phase

systems, and can be treated as such; since the mutual reactions

between the three phases balance at equal distribution of load,
that is, since each phase is acted upon by the preceding phase in

an equal but opposite manner as by the following phase.
With unequal distribution of load between the different

branches, the voltages and phase differences become more or less

unequal. These unbalancing effects are obviously maximum if

some of the phases are fully loaded, others unloaded.

Let E = e.m.f. between branches 1 and 2 of a three-phaser.

Then
e E = e.m.f. between 2 and 3,

e
zE = e.m.f. between 3 and 1;

where e = \/H =
.

2

Let

Zi, Z2 , Zz = impedances of the lines issuing from generator
terminals 1, 2, 3,

and FI, F2 ,
F3

=
admittance^ of the consumer circuits con-

nected between lines 2 and 3, 3 and 1, 1 and 2.

If then,

Ii, 7 2 , Is, are the currents issuing from the generator termi-

nals into the lines, it is,

II + /2 + h = 0. (1)

If, 7'i, 7' 2 ,
7' 3

= currents through the admittances, FI, F2 ,
F3 ,

from 2 to 3, 3 to 1, 1 to 2, it is,

Ii = 7 3
' - 7' 2 , or, /! + 7' 2

- 7' 3
=

72
= K - K, or, 72 + 7'3

- I\ =
(2)

h = 7'2 - K, or, 7 3 + 7'i - 7'2
=

457
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These three equations (2) added, give (1) as dependent

equation.

At the ends of the lines 1, 2, 3, it is:

fj 1
= E\ Ziy.1 2 ~f"

E'z = Ez Zili -\-

the differences of potential, and :

I' i
= E\Y

I> 2
= E' 2Y

T f = l?
f V

(3)

(4)

the currents in the receiver circuits.

These nine equations (2), (3), (4), determine the nine quan-
tities: 1 1, 72 ,

/3 , I/, 7 2 ', //, Ei', E*', E,'.

Equations (4) substituted in (2) give:

777>/ V" 7?' V
I
= E 3/3 E 2 i 2/W V 77" V /'K^

2
= E ill Hi 3^3 (5)

These equations (5) substituted in (3), and transposed, give:

since E\ = e E

E3
= E

as e.m.fs. at the generator terminals.

e E - E\(l

e*E - E'2 (l

E' =

3
=

i
=

(6)

as three linear equations with the three quantities, E
r

\ t
E" 2 ,

#' 3 .
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=
I FA,
FA,

we have:

hence,

Substituting the abbreviations:

-(1 + FA + FA), FA, F3Z2

K = FA, -
(1 + FA + FA),

A, F2Z!,
-

(1 + FA + FA)

, FA, F 3Z2

2
,

-
(1 + F2Z 3 + F 2ZO, F 3Z!

I, Y*Z lt
-

(1 + FgZi 4-

F3Z 2

(7)

1,
-

(1

FA), F2Z 3 ,

-
(1 + FA + F2ZO,

+ FA)
e

K
.

EK

(8)

I'f-

(9)

J, =

(10)

E\ + E'2 + E' 3
=

I

/I + /2 + /8 j

(ID
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309. SPECIAL CASES.

A. Balanced System

FV V V
i
= 1 2

= 1 3
= y

Substituting this in (6), and transposing:

#! =

E2
=

E,=

//
.
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EY

Ii

1+2YZ
EY

1+2YZ
EY

.

2 1+2FZ
/3 =

C. Two Circuits Loaded, One Unloaded

Y l
= F2

= F, F3
=

0,

i\
= ^2 ^3 = u

Substituting this in equations (6), it is

e E - E f

i(l + 2 FZ) + '

2FZ = 01

2 FZ) + E'x O
loaded branches.

- J0' 8 + #' 2)FZ = unloaded branch.

or, since

(13)

(13)

TJT TTIf 77T/ ~\7 rj f\
Ju zv 3 !/3lZ/ U,

E
YZ'

thus,

I + 4 YZ + 3 F 2Z2

1 + 4 FZ + 3 F2Z 2

E' s
=

1 + YZ

loaded branches.

unloaded branch.

(14)

As seen, with unsymmetrical distribution of load, all three

branches become more or less unequal, and the phase displace-

ment between them unequal also.



CHAPTER XXXVII

QUARTER-PHASE SYSTEM

310. In a three-wire quarter-phase system, or quarter-phase

system with common return-wire of both phases, let the two

outside terminals and wires be denoted by 1 and 2, the middle -

wire or common return by 0.

It is then,

EI E = e.m.f. between and 1 in the generator.

Ez = JE = e.m.f. between and 2 in the generator.

Let 1 1 and 12
= currents in 1 and in 2,

I = current in 0,

Zj and Z2
= impedances of lines 1 and 2,

Z = impedance of line 0,

FI and F2
= admittances of circuits to 1, and to 2,

I' i and I'2 = currents in circuits to 1, and to 2,

E'i and E'% = potential differences at circuit to 1, and

to'2.

it is then, /i + 7 2 + 7 =
0,

T / T I 7 \ . I \*-)

or, IQ = -

that is, IQ is common return of /i and 72 .

Further, we have:

E', = E - /iZi + /oZ = E - 7,(Zi + Z )
- / 2Z

,

E' 2
= JE - 7 2Z + /oZ = JE - / 2 (Z 2 + Z )

- V "

and 7i =
F^'i

7 _ v T?' ^Q^
f

2 1 1& 2 (o;

Substituting (3) in (2), and expanding,

'i
= E

.(l + FiZo + FiZi) (1 + K 2Z + F 2Z2)
-

+ FiZo + FiZO (1 + F2Z + F 2Z2)
-

462
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Hence, the two e.m.fs. at the end of the line are unequal in

magnitude, and not in quadrature any more.

311. SPECIAL CASES:

A. Balanced System

Zo= vi ;

Fi = F2
= F.

Substituting these values in (4), gives:

E

I -4- X A. I A. V '/. _J_ V ZL I ZL V * '/. '*

(5)

1 +V (1 + A/2) YZ + (1 + \/2) F 2Z 2

1 + (1.707 + 0.707 j)FZ
1 + 3.414 YZ + 2.414 F 2Z 2

h A/2) FZ + (1 + -v/2) F2Z
1 + (1.707 + 0.707 y) FZ"

J
1 + 3.414 FZ + 2.414 F2Z 2

Hence, the balanced quarter-phase system with common re-

turn is unbalanced with regard to voltage and phase relation,

or in other words, even if in a quarter-phase system with common
return both branches or phases are loaded equally, with a load

of the same phase displacement, nevertheless the system becomes

unbalanced, and the two e.m.fs. at the end of the line are neither

equal in magnitude, nor in quadrature with each other.

B. One Branch Loaded, One Unloaded

Zi = Z 2
= Z,

Z

(a) F! =
0, F2

= F,

(b) Y l
= F, F2

= 0.
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Substituting these values in (4), gives:

(a)

(6)

1 + YZ
E V2

i +

7? I 1= & I

2.414 + FZ

V2
1

E

1 + 1.707 YZ

1

V2

= E

V2
1

1 + 1.707 YZ

E\ = V2

1 +

=JE\

JE \

1 +
2.414 +

1.414

~YW

(6)

(7)

These two e.m.fs. are unequal, and not in quadrature with each

other.

But the values in case (a) are different from the values in case

(6).

That means:

The two phases of a three-wire, quarter-phase system are
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unsymmetrical, and the leading phase, 1, reacts upon the lagging

phase, 2, in a different manner than 2 reacts upon 1.

It is thus undesirable to use a three-wire, quarter-phase system,

except in cases where the line impedances, Z, are negligible.

In all other cases, the four-wire, quarter-phase system is pref-

erable, which essentially consists of two independent single-phase

circuits, and is treated as such.

Obviously, even in such an independent quarter-phase system,
at unequal distribution of load, unbalancing effects may take

place.

If one of the branches or phases is loaded differently from the

other, the drop of voltage and the shift of the phase will be differ-

ent from that in the other branch; and thus the e.m.fs. at the end

of the lines will be neither equal in magnitude, nor in quadrature
with each other.

With both branches, however, loaded equally, the system
remains balanced in voltage and phase, just like the three-phase

system under the same conditions.

Thus the four-wire, quarter-phase system and the three-phase

system are balanced with regard to voltage and phase at equal
distribution of load, but are liable to become unbalanced at

unequal distribution of load; the three-wire, quarter-phase

system is unbalanced in voltage and phase, even at equal dis-

tribution of load.

30



APPENDIX

ALGEBRA OF COMPLEX IMAGINARY QUANTITIES

("See Engineering Mathematics")

INTRODUCTION

312. The system of numbers, of which the science of algebra

treats, finds its ultimate origin in experience. Directly derived

from experience, however, are only the absolute integral numbers;

fractions, for instance, are not directly derived from experience,

but are abstractions expressing relations between different

classes of quantities. Thus, for instance, if a quantity is divided

in two parts, from one quantity two quantities are derived, and

denoting these latter as halves expresses a relation, namely, that

two of the new kinds of quantities are derived from, or can be

combined to one of the old quantities.

313. Directly derived from experience is the operation of

counting or of numeration,

a, a + 1, a + 2, a -f- 3 . . . .

Counting by a given number of integers,

1 + 1 + 1 . . . + 1

a H =
c,

o integers

introduces the operation of addition, as multiple counting,

a + b = c.

It is

a + b = b + a;

that is, the terms of addition, or addenda, are interchangeable.

Multiple addition of the same terms,

a + a + a + . . . +a
b equal numbers

introduces the operation of multiplication,

a X b = c.

466
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It is

a X b = b X a,

that is, the terms of multiplication, or factors, are inter-

changeable.

Multiple multiplication of the same factors,

a X a X a X X a

b equal numbers

introduces the operation of involution,

ab = c.

Since

ab is not equal to &,

the terms of involution are not interchangeable.

314. The reverse operation of addition introduces the opera-

tion of subtraction.

If

a + b =
c,

it is

c b = a.

This operation cannot be carried out in the system of absolute

numbers, if

b > c.

Thus, to make it possible to carry out the operation of sub-

traction under any circumstances, the system of absolute num-
bers has to be expanded by the introduction of the negative

number,
- a = (- 1) X a,

where

( 1) is the negative unit.

Thereby the system of numbers is subdivided in the positive

and negative numbers, and the operation of subtraction possible

for all values of subtrahend and minuend. From the definition

of addition as multiple numeration, and subtraction as its inverse

operation, it follows:

c - (- b)
= c + 6,

thus:

(- 1) X (- 1)
=

1;

that is, the negative unit is defined by ( I)
2 = 1.
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315. The reverse operatiou of multiplication introduces the

operation of division.

If

a X b = c,

it is

c

h
~ "

In the system of integral numbers this operation can only be

carried out if b is a factor of c.

To make it possible to carry out the operation of division

under any circumstances, the system of integral numbers has to

be expanded by the introduction of the fraction,

| i i i*f>
where T is the integer fraction, and is denned by

316. The reverse operation of involution introduces two new

operations, since in the involution,

ab =
c,

the quantities a and b are not reversible.

Thus

\/c =
a, the evolution,

loga c = b, the logarithmation.

The operation of evolution of terms, c, which are not complete

powers, makes a further expansion of the system of numbers

necessary, by the introduction of the irrational number (endless

decimal fraction), as for instance,

\/2 = 1.414213. . .

317. The operation of evolution of negative quantities, c, with

even exponents, b, as for instance,

2 ,

makes a further expansion of the system of numbers necessary,

by the introduction of the imaginary unit
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Thus
2 /- 2 / 2 /-

where:
V=

o_

== V= 1 X Vi
\/^ 1 is denoted by j.

Thus, the imaginary unit, j, is defined by

By addition and subtraction of real and imaginary units, com-

pound numbers are derived of the form,

a + jb,

which are denoted as complex imaginary numbers, or general
numbers.

No further system of numbers is introduced by the operation
of evolution.

The operation of logarithmation introduces the irrational and

imaginary and complex imaginary numbers also, but no further

system of numbers.

318. Thus, starting from the absolute integral numbers of

experience, by the two conditions:

1st. Possibility of carrying out the algebraic operations and
their reverse operations under all conditions,

2d. Permanence of the laws of calculation,

the expansion of the system of numbers has become necessary,

into

positive and negative numbers,

integral numbers and fractions,

rational and irrational numbers,
real and imaginary numbers and complex imaginary numbers.

Therewith closes the field of algebra, and all the algebraic

operations and their reverse operations can be carried out ir-

respective of the values of terms entering the operation.

Thus within the range of algebra no further extension of the

system of numbers is necessary or possible, and the most general
number is

a + jb,

where a and b can be integers or fractions, positive or negative,

rational or irrational.

Any attempt to extend the system of numbers beyond the

complex quantity, leads to numbers, in which the factors of a

product are not interchangeable^ in which one factor of a product



470 ALTERNATING-CURRENT PHENOMENA

may be zero without the product being zero, etc., and which thus

cannot be treated by the usual methods of algebra, that is, are

extra-algebraic numbers. Such for instance are the double fre-

quency vector products of Chapter XV.

ALGEBRAIC OPERATIONS WITH GENERAL NUMBERS

319. Definition of imaginary unit:

J2
= - 1.

Complex imaginary number:

A = a + jb.

Substituting :

a = r cos 0,

6 = r sin 0,

it is

A = r(cos + j sin 0),

where

r = vector,
= amplitude of general number, A.

Substituting :

COS0

sin

it is

where e = im
(l
+

)"
= .2

A =
r<P,

j x 2 x 3 x . . <

is the basis of the natural logarithms.

Conjugate numbers are called:

a H- jb = r(cos ft + j sin 0) =
re^,

and a - jb = r(cos [- 0]+ j sin [- 0])
= r(cqs

-
j sin 0) = re~

3f
*,

it is

(a -h jb)(a
-

jb)
= a 2 + b 2 = r2

.
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Associate numbers are called:

a + jb = r (cos + j sin 0) = re^,

and

6 + ja = r
(cos [|

-
/s]
+ j sin

[|
-

0])
= ni(* * ')>

it is

(a + jb)(b + ja) = j(a
2 + 6 2

)
= jr

2
.

If

a -f- J6 = a' + jb',

it is

a =
a',
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involution:

(a+jb) n =
{r(cos/3 + jsin/3))

n =
{re^}

n

= rn (cos wj8 + j sin n/3)
= rV71

^;

W y- / /3 . . . /3\ n y
-

j
: v r (cos

- + j sm -)
= v re n .

321. .Roo^ o/ the Unit:

vT = + 1,
--

i;

u-1
- ! + J V3 - 1 -JV3.

= +1,- ~2- -2~
= +1, -

1, +j, -
j;

6/T j. 1 lr\/3 -l+j\/3 -1-JV3 +1-JA/3VI =+1, -
-y- ^-~ >

- 1'"-2- ^"" J

8
/T- LI . +1+J +1-J -1+.7 -1-j.--

n/- 27T/C
,

. . 27T/C 2^
V 1 = cos - h J sm -- = e

,
fc = 0, 1, 2 . . . . n 1.

n n

322. Rotation:

In the complex imaginary plane, multiplication with

n/- 2-JT
,

27T ^
V 1 = cos ---\- j sin - - = e n

n n

means rotation, in positive direction, by of a revolution,

multiplication with (1) means reversal, or rotation by 180,

multiplication with (+ j) means positive rotation by 90,

multiplication with ( j) means negative rotation by 90.

323. Complex Imaginary Plane:

While the positive and negative numbers can be represented

by the points of a line, the complex imaginary numbers or general

numbers are represented by the points of a plane, with the hori-

zontal axis, A'OA, as real axis, the vertical axis, B'OB, 'as im-

aginary axis. Thus all

the positive real numbers are represented by the points t)f half-

axis OA toward the right;

the negative real numbers are represented by the points of half-

axis OA' toward the left;
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the positive imaginary numbers are represented by the points of

half-axis OB upward;
the negative imaginary numbers are represented by the points of

half-axis OB' downward;
the complex imaginary or general numbers are represented by the

points outside of the coordinate axes.





INDEX
Absolute values of complex quanti-

ties, 37

Actual generated e.m.f., alternator,

272

Admittance, 55

of dielectric, 154

due to eddy currents, 137

to hysteresis, 129

Admittivity of dielectric circuit, 160

Air-gap in magnetic circuit, 119, 132

Ambiguity of vectors, 39

Amplitude, 6, 20

Apparent capacity of distorted wave,
386

efficiency of induction motor,
234

impedance of transformer, 201

torque efficiency of induction

motor, 234

Arc causing harmonics, 353

as pulsating resistance, 352

volt-ampere characteristic, 354

wave construction, 355

Armature reaction of alternator, 260,

272

Average value of wave, 11

Balanced polyphase system, 397

Balance factor of polyphase system,
406

Brush discharge, 112

Cable, topographical characteristic,

42

Capacity, 4, 9

of line, 174

Choking coil, 96

Circuit characteristic of line and

cable, 44

dielectric and dynamic, 159

factor of general wave, 383

Coefficient of eddy currents, 138

of hysteresis, 123

Combination of sine waves, 31

Compensation for lagging currents

by condensance, 72

Condensance in symbolic expression,

36

Condenser as reactance and suscep-

tance, 96

with distorted wave, 384

motor on distorted wave, 392

motor, single-phase induction,

249, 257

synchronous, 339

Conductance of circuit with induc-

tive line, 84

direct current, 55

due to eddy currents, 137

effective, 111

due to hysteresis, 126

parallel and series connection,

54

Conductivity, dielectric, 153

of dielectric circuit, 160

Constant current from constant po-

tential, 76

synchronous motor, 337

potential constant current trans-

formation, 76

Consumed voltage, by resistance, re-

actance, impedance, 23

Control of voltage by shunted sus-

ceptance, 89

Corona, 112, 161

of line, 174

Counter e.m.f. of impedance, react-

ance, resistance, self-induc-

tion, 23

of synchronous motor, 24, 315

Crank diagram, 19

and polar diagram, comparison,
51

Critical voltage of corona, 166

Cross currents in alternators, 293

Cross flux, magnetic of transformer,

187

Cycle, magnetic or hysteresis, 114

475
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Delta connection of three-phase sys-

tem, 416

current in three-phase system,
417

delta transformation, 425

Y transformation, 425

voltage in three-phase system,
417

Demagnetizing effect of eddy cur-

rents, 142

Diametrical connection of trans-

formers, six-phase, 429

Dielectric circuit, 159

density, 152

field, 150

hysteresis, 112, 150

strength, 161

Direct-current system, efficiency,

441

Displacement current, 152

Disruptive gradient, 165

Distortion by magnetic field, resist-

ance and reactance pulsa-

tion, 342

of magnetizing current, 117

of wave, see Harmonics

by hysteresis, 116

Distributed capacity, 168

Double delta connections of trans-

formers to six-phase, 428

frequency power and torque
with distorted wave, 381

quantities, 180

peak wave, 370

T connections of transformers

to six-phase, 430

Y connection of transformers to

six-phase, 429

Drop of voltage in line, 25

Dynamic circuit, 159

Eddy currents, 112

admittance, 137

coefficient, 138

conductance, 137

in conductor, 144

loss with distorted wave, 377

of power, 136

Effective circuit constants, 168

Effective circuit conductance, 111

power, 180

reactance, 112

resistance, 2, 5, 9, 111

susceptance, 112

value of wave; 11

in polar diagram, 53

Efficiency of circuit with inductive

line, 88, 95

induction motor, 234

Electrostatic, see Dielectric

E.m.f. of self-induction, 123

Energy distance of dielectric field,

165

flow in polyphase system, 406

and torque as component of

double frequency vector,

186

Epoch, 6

Equivalent circuit of transformer,

202

sine wave in polar diagram, 53

single-phase circuit of polyphase

system, 448

Excitation of induction generator,

238

Exciter of induction generator, 238

Exciting admittance of induction

motor, 211

current of induction motor, 211

single-phase induction motor,

247

transformer, 189

Field characteristic of alternator, 265

Fifth harmonic, 370
'

Five-wire system, efficiency, 466

Flat top wave, 370

zero wave, 370

Foucault currents, 113

Four-phase system, 397

wire systems, efficiency, 466

Frequency, 6

General wave, symbolism, 379

Generator, induction, 237

Harmonics, 7

caused by arc, 353
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Harmonics of current, 341

by hysteresis, 116, 358

by three-phase transformer, 363

of voltage, 341

Hedgehog transformer, 189

Hemisymmetrical polyphase sys-

tem, 404

Higher harmonics, see Harmonics

Hysteresis, admittance, 129

advance of phase, 122, 130

coefficient, 123

conductance, 126

cycle, 115

unsymmetrical, 13.5

dielectric, 150

dielectric and magnetic, 112

in line, 174

loss, 122

with distorted wave, 377

power current, 117

voltage, 123

Imaginary power, 186

Impedance, 2, 9

apparent, of transformer, 201

of induction motor, 211

in series with circuit, 69

series and parallel connections,

55, 59

in symbolic expression, 35

synchronous, of alternator, 277

Independent polyphase system, 397

Inductance, 3, 9

factor of general wave, 382

Induction generator, 237

machine as inductive reactance,
96

motor, 208

on distorted wave, 392

Inductive devices, starting single-

phase induction motor, 246

line, maximum power, 82

Inductor alternator, unsymmetrical

magnetic cycle, 135

Influence, electrostatic, from line,

174

Instantaneous value, 11

Intensity of wave, 20

Interlinked polyphase system, 397

Inverted three-phase system, 398,

408, 413

efficiency, 466

Ironclad circuit, 119, 131

wave shape distortion, 358, 361

Iron wire and eddy currents, 140

unequal current distribution,

147

j as distinguishing index, 32

as imaginary unit, 33

Joule's law, 1, 5

Kirchhoff's laws, direct current, 1

in crank diagram, 22, 60

in polar diagram, 49

in symbolic expression, 34

Lag in alternator, demagnetizing,
260

of current, 21

in synchronous motor, magnet-
izing, 261

Laminated iron and eddy currents,

138

Lead in alternator, magnetizing, 260

of current, 21

by synchronous condenser, 339

in synchronous motor, demag-

netizing, 261

Leakage, 112, 151 -<

currents through dielectric, 152

in transformer, 189

of line, 174

reactance of transformer, 187

Line capacity, 169

phase control, 99

power factor control, 99

topographic characteristic, 43

Load curves of synchronous motor,
333

Magnetic cycle, 114

hysteresis, 112

Magnetizing current, 117

Maximum output of inductive line,

83

non-inductive circuit and in-

ductive line, 81
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Maximum power of induction mo-

tor, 222

torque of induction motor, 219

Mean value of wave, 12

Metering of polyphase systems, 442

M.m.f., rotating, of polyphase sys-

tem, 401

Molecular friction, 112

Monocyclic connection of trans-

formers, 428

devices, starting single-phase

induction motor, 246

system, 409

Multiple phase control, 108

Mutual inductance, 174

induction, 147

inductive reactance of line, 174

Neutral voltage of three-phase trans-

former, 367

Nominal generated e.m.f. of alter-

nator, 263, 276, 282

Non-inductive circuit and inductive

line, 79, 81

Ohm's law, 1

Open delta transformation, 427

Oscillating waves, 175

Output, see Power
of circuit with inductive line,

82, 95

in phase control, 104

Parallel connection of admittances,
59

of resistances and conduct-

ances, 54

operation of alternators, 292

Parallelogram of sine waves, 22

in polar diagram, 48

Peaked waves, 370

Peaks of voltage by wave distortion,

360, 367

Permittivity, 152

of dielectric circuit, 160

Phase, 6, 20

advance angle by hysteresis,

122, 130

Phase characteristic of synchronous

motor, 328

control, 97

multiple, 108

difference in transformer, 29

splitting devices starting single-

phase induction motor, 246

Polar coordinates of alternating

waves, 46

and crank diagram, comparison,
51

Polarization, 4

cell as condensive reactance, 96

Polycyclic systems, 409

Polygone of sine waves, 22

in polar diagram, 48

Polyphase and constituent single-

phase circuit, 448

Power, see Output
characteristics of polyphase sys-

tems, 409

components of current and volt-

age, 168

consumption by corona, 165

as double frequency vector, 180

factor of arc, 356

correction by synchronous

condenser, 339

of dielectric circuit, 152

of general wave, 382

of induction motor, 234

phase control, 99

of general wave, 381

of induction motor, 216, 222

loss in dielectric, 157

of sine wave, 22

vector denotation, 179

of wave in polar diagram, 49

Primary admittance of transformer,

197

impedance of transformer, 198

Pulsating magnetic circuit, 135

wave, 11

Pulsation of magnetic circuit, react-

ance and resistance, 342

Quadrature components of alterna-

tor armature reaction and

reactance, 282
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Quadrature flux of single-phase in-

duction motor, 245

Quarter-phase system, 398

efficiency, 466

three-phase transformation, 423

Quintuple harmonic, see Fifth har-

monic

Radiation from line, 174

Ratio of transformer, 197

Reactance, 2, 9

effective, 112

in phase control, 103

in series with circuit, 63

in symbolic expression, 35

synchronous, of alternator, 277

Reactive component of current and

voltage, 168

power, 180

with general wave, 382

Rectangular components, 31

Reduction of polyphase system to

single-phase circuit, 448

Regulation of circuit with inductive

line, 82, 86

curve of alternator, 290

Resistance, effective, 2, 5, 9, 111

of line, 174

parallel and series connection,
54

in series with circuit, 60

in starting induction motor,
224

in symbolic expression, 35

Resolution of sine waves, 31

Resonance of condenser with dis-

torted wave, 387

by harmonics, 373

Ring connection of polyphase sys-

tem, 416

current in polyphase system,
417

voltage in polyphase system,
417

Rise of voltage of circuit by shunted

susceptance, 94

Rotating field of symmetrical poly-

phase system, 401

Ruhmkorff coil, 7

Saturation, magnetic, induction gen-

erator, 238

Saw-tooth wave, 370

Screening effect of eddy currents, 142

Secondary impedance of trans-

former, 198

Self-excitation of induction genera-

tor, 238

Self-inductance, 174

Self-inductive reactance of alterna-

tor, 261

of transformer, 187

voltage, 123

Series connection of impedances, 55,

59

of resistances and conduct-

ances, 54

impedance in circuit, 69

operation of alternators, 294

reactance in circuit, 63

resistance in circuit, 60

Sharp zero wave, 370

Short circuit of alternator, 273, 288

Shunted condensance and lagging

current, 72

Silent discharge from line, 174

Single-phase cable, topographical

characteristic, 42

circuit equivalent to polyphase

system, 448

efficiency, 466

induction motor, 245

system, 398

Slip of induction motor, 208

Spheres, dielectric field, 164

Stability of induction motor, 238

Star connection of polyphase system,
415

current in polyphase system,
417

voltage in polyphase system,

417

Starting devices of single-phase in-

duction motor, 245

torque of induction motor, 223

single-phase induction motor,

252

Susceptance, 55

of circuit with inductive line, 82
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Susceptance, effective; 112

Susceptivity, dielectric, 153, 160

Symbolic expression of power, 181

Symmetrical polyphase system, 396

Synchronizing power of alternators,

294

Synchronous condenser, 339

converter for phase control, 98

impedance of alternator, 277

machine as shunted susceptance,

96

motor, fundamental equation,

316

for phase control, 98

supplied by distorted wave,
389

reactance of alternator, 262, 272

watts as torque, 233

T connection of transformers, 427

Terminal voltage of alternator, 263

Tertiary circuit with condenser,

single-phase induction mo-

tor, 249

Third harmonic, 369

in three-phase system, 364

Three-phase line, topographic char-

acteristic, 43

quarter-phase transformation,

423

system, 397

efficiency, 466

voltage drop, 41

transformer, wave distortion,

363

Three-wire single-phase system, effi-

ciency, 466

Time constant, 3

and crank diagram, comparison,
51

diagram of alternating wave, 48

Topographic characteristic of cable

and line, 42

Torque as double frequency vector,

185

efficiency of induction motor,
234

Torque of induction motor, 216, 219,
223

single-phase induction motor,

248, 252

Transformation by two transform-

ers, of polyphase systems,
422

Transformer, 187

diagram, 26, 30

equivalent circuit, 202

Transmission line, see Line

Treble peak wave, 370

Triple harmonic, see Third harmonic

True power of generator wave, sym-

bolic, 382

Unbalanced polyphase system, 397

quarter-phase system, 463

three-phase system, 461

Unequal current distribution in con-

ductor, 144

Unsymmetrical hysteresis cycle, 135

polyphase system, 396

V connection of transformers on

three-phase system, 427

Vector power, 179

Virtual generated e.m.f. of alter-

nator, 272

Voltage of circuit with inductive

line, 82, 86

control by shunted susceptance,

89

by synchronous condenser,

339

peaks by wave distortion, 360,

367

phase control, 99

Y connection of three-phase system,

416

current in three-phase system,

417

Delta transformation, 426

voltage in three-phase system,

417

Y transformation, 426
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